Cargando…
How Machine Learning is Powering Neuroimaging to Improve Brain Health
This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neu...
Autores principales: | Singh, Nalini M., Harrod, Jordan B., Subramanian, Sandya, Robinson, Mitchell, Chang, Ken, Cetin-Karayumak, Suheyla, Dalca, Adrian Vasile, Eickhoff, Simon, Fox, Michael, Franke, Loraine, Golland, Polina, Haehn, Daniel, Iglesias, Juan Eugenio, O’Donnell, Lauren J., Ou, Yangming, Rathi, Yogesh, Siddiqi, Shan H., Sun, Haoqi, Westover, M. Brandon, Whitfield-Gabrieli, Susan, Gollub, Randy L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515245/ https://www.ncbi.nlm.nih.gov/pubmed/35347570 http://dx.doi.org/10.1007/s12021-022-09572-9 |
Ejemplares similares
-
Harmonized diffusion MRI data and white matter measures from the Adolescent Brain Cognitive Development Study
por: Cetin-Karayumak, Suheyla, et al.
Publicado: (2023) -
SlicerTMS: Interactive Real-time Visualization of Transcranial Magnetic Stimulation using Augmented Reality and Deep Learning
por: Franke, Loraine, et al.
Publicado: (2023) -
Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology
por: Baxi, Madhura, et al.
Publicado: (2022) -
Joint Frequency and Image Space Learning for MRI Reconstruction and Analysis
por: Singh, Nalini M., et al.
Publicado: (2022) -
Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting
por: Leming, Matthew J., et al.
Publicado: (2023)