Cargando…
H2G-Net: A multi-resolution refinement approach for segmentation of breast cancer region in gigapixel histopathological images
Over the past decades, histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we u...
Autores principales: | Pedersen, André, Smistad, Erik, Rise, Tor V., Dale, Vibeke G., Pettersen, Henrik S., Nordmo, Tor-Arne S., Bouget, David, Reinertsen, Ingerid, Valla, Marit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515451/ https://www.ncbi.nlm.nih.gov/pubmed/36186805 http://dx.doi.org/10.3389/fmed.2022.971873 |
Ejemplares similares
-
Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology
por: Pettersen, Henrik Sahlin, et al.
Publicado: (2022) -
Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms
por: Bouget, David, et al.
Publicado: (2021) -
Raidionics: an open software for pre- and postoperative central nervous system tumor segmentation and standardized reporting
por: Bouget, David, et al.
Publicado: (2023) -
Documenting Paintings with Gigapixel Photography
por: Cabezos-Bernal, Pedro M., et al.
Publicado: (2021) -
Deep Learning-Based Retrieval System for Gigapixel Histopathology Cases and the Open Access Literature
por: Schaer, Roger, et al.
Publicado: (2019)