Cargando…
Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments
In the past decade, there has been exponentially growing interest in the use of observational data collected as a part of routine healthcare practice to determine the effect of a treatment with causal inference models. Validation of these models, however, has been a challenge because the ground trut...
Autores principales: | Shi, Jingpu, Wang, Dong, Tesei, Gino, Norgeot, Beau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515575/ https://www.ncbi.nlm.nih.gov/pubmed/36187323 http://dx.doi.org/10.3389/frai.2022.918813 |
Ejemplares similares
-
An Application of an Embedded Model Estimator to a Synthetic Nonstationary Reservoir Model With Multiple Secondary Variables
por: Daly, Colin
Publicado: (2021) -
AI Technologies, Privacy, and Security
por: Elliott, David, et al.
Publicado: (2022) -
Synthetic OCT Data Generation to Enhance the Performance of Diagnostic Models for Neurodegenerative Diseases
por: Danesh, Hajar, et al.
Publicado: (2022) -
DaGzang: a synthetic data generator for cross-domain recommendation services
por: Nguyen, Luong Vuong, et al.
Publicado: (2023) -
An Overview of Current Solutions for Privacy in the Internet of Things
por: Yang, Guang
Publicado: (2022)