Cargando…
Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion
Brain tumor segmentation in multimodal MRI volumes is of great significance to disease diagnosis, treatment planning, survival prediction and other relevant tasks. However, most existing brain tumor segmentation methods fail to make sufficient use of multimodal information. The most common way is to...
Autores principales: | Liu, Yu, Mu, Fuhao, Shi, Yu, Cheng, Juan, Li, Chang, Chen, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515796/ https://www.ncbi.nlm.nih.gov/pubmed/36188482 http://dx.doi.org/10.3389/fnins.2022.1000587 |
Ejemplares similares
-
Editorial: Multimodal brain image fusion: Methods, evaluations, and applications
por: Liu, Yu, et al.
Publicado: (2023) -
Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
por: He, Xueqin, et al.
Publicado: (2021) -
Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning
por: Sun, Li, et al.
Publicado: (2019) -
Multimodal brain image fusion based on error texture elimination and salient feature detection
por: Li, Xilai, et al.
Publicado: (2023) -
Segmenting Brain Tumor Using Cascaded V-Nets in Multimodal MR Images
por: Hua, Rui, et al.
Publicado: (2020)