Cargando…

Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy

Rationale: Cerebral cavernous malformation (CCM) is prone to recurring microhemorrhage, which can lead to drug-resistant epilepsy. Surgical resection is the first choice to control seizures for CCM-associated epilepsy. At present, removal of resection-related tissue only depends on cautious visual i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shu, Li, Yueying, Xu, Yixuan, Song, Shiwei, Lin, Ruolan, Xu, Shuoyu, Huang, Xingxin, Zheng, Limei, Hu, Chengcong, Sun, Xinquan, Huang, Feng, Wang, Xingfu, Chen, Jianxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516234/
https://www.ncbi.nlm.nih.gov/pubmed/36185604
http://dx.doi.org/10.7150/thno.77532
_version_ 1784798663550173184
author Wang, Shu
Li, Yueying
Xu, Yixuan
Song, Shiwei
Lin, Ruolan
Xu, Shuoyu
Huang, Xingxin
Zheng, Limei
Hu, Chengcong
Sun, Xinquan
Huang, Feng
Wang, Xingfu
Chen, Jianxin
author_facet Wang, Shu
Li, Yueying
Xu, Yixuan
Song, Shiwei
Lin, Ruolan
Xu, Shuoyu
Huang, Xingxin
Zheng, Limei
Hu, Chengcong
Sun, Xinquan
Huang, Feng
Wang, Xingfu
Chen, Jianxin
author_sort Wang, Shu
collection PubMed
description Rationale: Cerebral cavernous malformation (CCM) is prone to recurring microhemorrhage, which can lead to drug-resistant epilepsy. Surgical resection is the first choice to control seizures for CCM-associated epilepsy. At present, removal of resection-related tissue only depends on cautious visual identification of CCM lesions and perilesional yellowish hemosiderin rim by the neurosurgeon. Inspired by the resection requirements, we proposed quantitative multiphoton microscopy (qMPM) for a histopathology-level diagnostic paradigm to assist clinicians in precisely complete resection. Methods: A total of 35 sections specimens collected from 12 patients with the CCM-related epilepsy were included in this study. First, qMPM utilized a label-free multi-channel selective detection to image the histopathological features based on the spectral characteristics of CCM tissues. Then, qMPM developed three customized algorithms to provide quantitative information, a vascular patterns classifier based on linear support vector machine, visualization of microhemorrhage regions based on hemosiderin-related parameters, and the CCM-oriented virtual staining generative adversarial network (CCM-stainGAN) was constructed to generate two types of virtual staining. Results: Focused on CCM lesion and perilesional regions, qMPM imaged malformed vascular patterns and micron-scale hemosiderin-related products. Four vascular patterns were automatically identified by the classifier with an area under the receiver operating characteristic curve of 0.97. Moreover, qMPM mapped different degrees of hemorrhage regions onto fresh tissue while providing three quantitative hemosiderin-related indicators. Besides, qMPM realized virtual staining by the CCM-stainGAN with 98.8% diagnostic accuracy of CCM histopathological features in blind analysis. Finally, we provided pathologists and surgeons with the qMPM-based CCM histopathological diagnostic guidelines for a more definitive intraoperative or postoperative diagnosis. Conclusions: qMPM can provide decision-making supports for histopathological diagnosis, and resection guidance of CCM from the perspectives of high-resolution precision detection and automated quantitative assessment. Our work will promote the development of MPM diagnostic instruments and enable more optical diagnostic applications for epilepsy.
format Online
Article
Text
id pubmed-9516234
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-95162342022-09-30 Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy Wang, Shu Li, Yueying Xu, Yixuan Song, Shiwei Lin, Ruolan Xu, Shuoyu Huang, Xingxin Zheng, Limei Hu, Chengcong Sun, Xinquan Huang, Feng Wang, Xingfu Chen, Jianxin Theranostics Research Paper Rationale: Cerebral cavernous malformation (CCM) is prone to recurring microhemorrhage, which can lead to drug-resistant epilepsy. Surgical resection is the first choice to control seizures for CCM-associated epilepsy. At present, removal of resection-related tissue only depends on cautious visual identification of CCM lesions and perilesional yellowish hemosiderin rim by the neurosurgeon. Inspired by the resection requirements, we proposed quantitative multiphoton microscopy (qMPM) for a histopathology-level diagnostic paradigm to assist clinicians in precisely complete resection. Methods: A total of 35 sections specimens collected from 12 patients with the CCM-related epilepsy were included in this study. First, qMPM utilized a label-free multi-channel selective detection to image the histopathological features based on the spectral characteristics of CCM tissues. Then, qMPM developed three customized algorithms to provide quantitative information, a vascular patterns classifier based on linear support vector machine, visualization of microhemorrhage regions based on hemosiderin-related parameters, and the CCM-oriented virtual staining generative adversarial network (CCM-stainGAN) was constructed to generate two types of virtual staining. Results: Focused on CCM lesion and perilesional regions, qMPM imaged malformed vascular patterns and micron-scale hemosiderin-related products. Four vascular patterns were automatically identified by the classifier with an area under the receiver operating characteristic curve of 0.97. Moreover, qMPM mapped different degrees of hemorrhage regions onto fresh tissue while providing three quantitative hemosiderin-related indicators. Besides, qMPM realized virtual staining by the CCM-stainGAN with 98.8% diagnostic accuracy of CCM histopathological features in blind analysis. Finally, we provided pathologists and surgeons with the qMPM-based CCM histopathological diagnostic guidelines for a more definitive intraoperative or postoperative diagnosis. Conclusions: qMPM can provide decision-making supports for histopathological diagnosis, and resection guidance of CCM from the perspectives of high-resolution precision detection and automated quantitative assessment. Our work will promote the development of MPM diagnostic instruments and enable more optical diagnostic applications for epilepsy. Ivyspring International Publisher 2022-09-11 /pmc/articles/PMC9516234/ /pubmed/36185604 http://dx.doi.org/10.7150/thno.77532 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Wang, Shu
Li, Yueying
Xu, Yixuan
Song, Shiwei
Lin, Ruolan
Xu, Shuoyu
Huang, Xingxin
Zheng, Limei
Hu, Chengcong
Sun, Xinquan
Huang, Feng
Wang, Xingfu
Chen, Jianxin
Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
title Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
title_full Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
title_fullStr Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
title_full_unstemmed Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
title_short Resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
title_sort resection-inspired histopathological diagnosis of cerebral cavernous malformations using quantitative multiphoton microscopy
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516234/
https://www.ncbi.nlm.nih.gov/pubmed/36185604
http://dx.doi.org/10.7150/thno.77532
work_keys_str_mv AT wangshu resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT liyueying resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT xuyixuan resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT songshiwei resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT linruolan resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT xushuoyu resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT huangxingxin resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT zhenglimei resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT huchengcong resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT sunxinquan resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT huangfeng resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT wangxingfu resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy
AT chenjianxin resectioninspiredhistopathologicaldiagnosisofcerebralcavernousmalformationsusingquantitativemultiphotonmicroscopy