Cargando…

Optimizing Health Coaching for Patients With Type 2 Diabetes Using Machine Learning: Model Development and Validation Study

BACKGROUND: Health coaching is an emerging intervention that has been shown to improve clinical and patient-relevant outcomes for type 2 diabetes. Advances in artificial intelligence may provide an avenue for developing a more personalized, adaptive, and cost-effective approach to diabetes health co...

Descripción completa

Detalles Bibliográficos
Autores principales: Di, Shuang, Petch, Jeremy, Gerstein, Hertzel C, Zhu, Ruoqing, Sherifali, Diana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516374/
https://www.ncbi.nlm.nih.gov/pubmed/36099006
http://dx.doi.org/10.2196/37838
Descripción
Sumario:BACKGROUND: Health coaching is an emerging intervention that has been shown to improve clinical and patient-relevant outcomes for type 2 diabetes. Advances in artificial intelligence may provide an avenue for developing a more personalized, adaptive, and cost-effective approach to diabetes health coaching. OBJECTIVE: We aim to apply Q-learning, a widely used reinforcement learning algorithm, to a diabetes health-coaching data set to develop a model for recommending an optimal coaching intervention at each decision point that is tailored to a patient’s accumulated history. METHODS: In this pilot study, we fit a two-stage reinforcement learning model on 177 patients from the intervention arm of a community-based randomized controlled trial conducted in Canada. The policy produced by the reinforcement learning model can recommend a coaching intervention at each decision point that is tailored to a patient’s accumulated history and is expected to maximize the composite clinical outcome of hemoglobin A(1c) reduction and quality of life improvement (normalized to [ ​0, 1 ​], with a higher score being better). Our data, models, and source code are publicly available. RESULTS: Among the 177 patients, the coaching intervention recommended by our policy mirrored the observed diabetes health coach’s interventions in 17.5% (n=31) of the patients in stage 1 and 14.1% (n=25) of the patients in stage 2. Where there was agreement in both stages, the average cumulative composite outcome (0.839, 95% CI 0.460-1.220) was better than those for whom the optimal policy agreed with the diabetes health coach in only one stage (0.791, 95% CI 0.747-0.836) or differed in both stages (0.755, 95% CI 0.728-0.781). Additionally, the average cumulative composite outcome predicted for the policy’s recommendations was significantly better than that of the observed diabetes health coach’s recommendations (t(n-1)=10.040; P<.001). CONCLUSIONS: Applying reinforcement learning to diabetes health coaching could allow for both the automation of health coaching and an improvement in health outcomes produced by this type of intervention.