Cargando…
Benchmarking Deep Learning Models for Tooth Structure Segmentation
A wide range of deep learning (DL) architectures with varying depths are available, with developers usually choosing one or a few of them for their specific task in a nonsystematic way. Benchmarking (i.e., the systematic comparison of state-of-the art architectures on a specific task) may provide gu...
Autores principales: | Schneider, L., Arsiwala-Scheppach, L., Krois, J., Meyer-Lueckel, H., Bressem, K.K., Niehues, S.M., Schwendicke, F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516600/ https://www.ncbi.nlm.nih.gov/pubmed/35686357 http://dx.doi.org/10.1177/00220345221100169 |
Ejemplares similares
-
Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
por: Rohrer, Csaba, et al.
Publicado: (2022) -
Machine Learning in Dentistry: A Scoping Review
por: Arsiwala-Scheppach, Lubaina T., et al.
Publicado: (2023) -
Predicting mortality in the very old: a machine learning analysis on claims data
por: Krasowski, Aleksander, et al.
Publicado: (2022) -
Impact of Image Context on Deep Learning for Classification of Teeth on Radiographs
por: Krois, Joachim, et al.
Publicado: (2021) -
Deep learning for cephalometric landmark detection: systematic review and meta-analysis
por: Schwendicke, Falk, et al.
Publicado: (2021)