Cargando…
Nutrition deprivation affects the cytotoxic effect of CD8 T cells in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the third leading cause of cancer-related death worldwide. Factors including carcinogens, infection of hepatitis viruses, alcohol abuse, and metabolic disorders such as non-alcoholic fatty liver disease mainly contribute to H...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516657/ https://www.ncbi.nlm.nih.gov/pubmed/36187392 http://dx.doi.org/10.4251/wjgo.v14.i9.1887 |
Sumario: | Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the third leading cause of cancer-related death worldwide. Factors including carcinogens, infection of hepatitis viruses, alcohol abuse, and metabolic disorders such as non-alcoholic fatty liver disease mainly contribute to HCC initiation and progression. Immunotherapy is one of the most powerful tools for unresectable HCC treatment in patients. CD8(+) T cells are a major immune component in the tumor microenvironment with cytotoxic effects against cancer cells. However, these CD8(+) T cells commonly display an exhaustion phenotype with high expression of programmed cell death protein 1, T-cell immunoglobulin and mucin-domain containing-3, and/or lymphocyte-activation gene 3, producing low levels of perforin (PRF1) and granzyme B (GZMB), as well as anti-tumor cytokines, such as interferon gamma and tumor necrosis factor alpha. In the referenced study, the authors also showed that deprivation of glutamine decreased the antitumor function of CD8(+) T cells, as well as the production of PRF1 and GZMB. However, the role of each amino acid in T cell function and exhaustion may depend on tumor type and tumor microenvironment, including the source of other nutrients. Overall, amino acids or other nutrient metabolites in the tumor microenvironment play a pivotal role in both tumor growth and immune response. |
---|