Cargando…
On the Choice of Active Site Sequences for Kinase-Ligand Affinity Prediction
[Image: see text] Recent work showed that active site rather than full-protein-sequence information improves predictive performance in kinase-ligand binding affinity prediction. To refine the notion of an “active site”, we here propose and compare multiple definitions. We report significant evidence...
Autores principales: | Born, Jannis, Shoshan, Yoel, Huynh, Tien, Cornell, Wendy D., Martin, Eric J., Manica, Matteo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516689/ https://www.ncbi.nlm.nih.gov/pubmed/36098536 http://dx.doi.org/10.1021/acs.jcim.2c00840 |
Ejemplares similares
-
PaccMann: a web service for interpretable anticancer compound sensitivity prediction
por: Cadow, Joris, et al.
Publicado: (2020) -
Protein–ligand binding affinity prediction exploiting sequence constituent homology
por: Abdel-Rehim, Abbi, et al.
Publicado: (2023) -
PaccMann(RL): De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning
por: Born, Jannis, et al.
Publicado: (2021) -
PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity
por: Ammar, Ammar, et al.
Publicado: (2023) -
Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning
por: Rube, H. Tomas, et al.
Publicado: (2022)