Cargando…
Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
[Image: see text] Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516709/ https://www.ncbi.nlm.nih.gov/pubmed/36186551 http://dx.doi.org/10.1021/jacsau.2c00306 |
_version_ | 1784798767596175360 |
---|---|
author | Sauza-de la Vega, Arturo Pandharkar, Riddhish Stroscio, Gautam D. Sarkar, Arup Truhlar, Donald G. Gagliardi, Laura |
author_facet | Sauza-de la Vega, Arturo Pandharkar, Riddhish Stroscio, Gautam D. Sarkar, Arup Truhlar, Donald G. Gagliardi, Laura |
author_sort | Sauza-de la Vega, Arturo |
collection | PubMed |
description | [Image: see text] Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet–triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn–Sham density functional theory for singlet–triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates. |
format | Online Article Text |
id | pubmed-9516709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95167092022-09-29 Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits Sauza-de la Vega, Arturo Pandharkar, Riddhish Stroscio, Gautam D. Sarkar, Arup Truhlar, Donald G. Gagliardi, Laura JACS Au [Image: see text] Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet–triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn–Sham density functional theory for singlet–triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates. American Chemical Society 2022-09-01 /pmc/articles/PMC9516709/ /pubmed/36186551 http://dx.doi.org/10.1021/jacsau.2c00306 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Sauza-de la Vega, Arturo Pandharkar, Riddhish Stroscio, Gautam D. Sarkar, Arup Truhlar, Donald G. Gagliardi, Laura Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits |
title | Multiconfiguration
Pair-Density Functional Theory
for Chromium(IV) Molecular Qubits |
title_full | Multiconfiguration
Pair-Density Functional Theory
for Chromium(IV) Molecular Qubits |
title_fullStr | Multiconfiguration
Pair-Density Functional Theory
for Chromium(IV) Molecular Qubits |
title_full_unstemmed | Multiconfiguration
Pair-Density Functional Theory
for Chromium(IV) Molecular Qubits |
title_short | Multiconfiguration
Pair-Density Functional Theory
for Chromium(IV) Molecular Qubits |
title_sort | multiconfiguration
pair-density functional theory
for chromium(iv) molecular qubits |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516709/ https://www.ncbi.nlm.nih.gov/pubmed/36186551 http://dx.doi.org/10.1021/jacsau.2c00306 |
work_keys_str_mv | AT sauzadelavegaarturo multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits AT pandharkarriddhish multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits AT strosciogautamd multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits AT sarkararup multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits AT truhlardonaldg multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits AT gagliardilaura multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits |