Cargando…

Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits

[Image: see text] Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet...

Descripción completa

Detalles Bibliográficos
Autores principales: Sauza-de la Vega, Arturo, Pandharkar, Riddhish, Stroscio, Gautam D., Sarkar, Arup, Truhlar, Donald G., Gagliardi, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516709/
https://www.ncbi.nlm.nih.gov/pubmed/36186551
http://dx.doi.org/10.1021/jacsau.2c00306
_version_ 1784798767596175360
author Sauza-de la Vega, Arturo
Pandharkar, Riddhish
Stroscio, Gautam D.
Sarkar, Arup
Truhlar, Donald G.
Gagliardi, Laura
author_facet Sauza-de la Vega, Arturo
Pandharkar, Riddhish
Stroscio, Gautam D.
Sarkar, Arup
Truhlar, Donald G.
Gagliardi, Laura
author_sort Sauza-de la Vega, Arturo
collection PubMed
description [Image: see text] Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet–triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn–Sham density functional theory for singlet–triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates.
format Online
Article
Text
id pubmed-9516709
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-95167092022-09-29 Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits Sauza-de la Vega, Arturo Pandharkar, Riddhish Stroscio, Gautam D. Sarkar, Arup Truhlar, Donald G. Gagliardi, Laura JACS Au [Image: see text] Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet–triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn–Sham density functional theory for singlet–triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates. American Chemical Society 2022-09-01 /pmc/articles/PMC9516709/ /pubmed/36186551 http://dx.doi.org/10.1021/jacsau.2c00306 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Sauza-de la Vega, Arturo
Pandharkar, Riddhish
Stroscio, Gautam D.
Sarkar, Arup
Truhlar, Donald G.
Gagliardi, Laura
Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
title Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
title_full Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
title_fullStr Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
title_full_unstemmed Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
title_short Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits
title_sort multiconfiguration pair-density functional theory for chromium(iv) molecular qubits
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516709/
https://www.ncbi.nlm.nih.gov/pubmed/36186551
http://dx.doi.org/10.1021/jacsau.2c00306
work_keys_str_mv AT sauzadelavegaarturo multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits
AT pandharkarriddhish multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits
AT strosciogautamd multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits
AT sarkararup multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits
AT truhlardonaldg multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits
AT gagliardilaura multiconfigurationpairdensityfunctionaltheoryforchromiumivmolecularqubits