Cargando…
Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
BACKGROUND: Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortality, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict preterm birth risk. The dense longitudinal information present in elec...
Autores principales: | Abraham, Abin, Le, Brian, Kosti, Idit, Straub, Peter, Velez-Edwards, Digna R., Davis, Lea K., Newton, J. M., Muglia, Louis J., Rokas, Antonis, Bejan, Cosmin A., Sirota, Marina, Capra, John A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516830/ https://www.ncbi.nlm.nih.gov/pubmed/36167547 http://dx.doi.org/10.1186/s12916-022-02522-x |
Ejemplares similares
-
Accounting for diverse evolutionary forces reveals mosaic patterns of selection on human preterm birth loci
por: LaBella, Abigail L., et al.
Publicado: (2020) -
Meta-Analysis of Vaginal Microbiome Data Provides New Insights Into Preterm Birth
por: Kosti, Idit, et al.
Publicado: (2020) -
Mosaic patterns of selection in genomic regions associated with diverse human traits
por: Abraham, Abin, et al.
Publicado: (2022) -
GSEL: a fast, flexible python package for detecting signatures of diverse evolutionary forces on genomic regions
por: Abraham, Abin, et al.
Publicado: (2023) -
Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth
por: Vora, Bianca, et al.
Publicado: (2018)