Cargando…
Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province
The development of traffic infrastructure involves massive land use changes along the transportation routes and stimulates urban sprawl at transfer nodes, leading to a degradation in ecosystem services, including soil conservation. For developing countries, especially for China, it is very important...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517110/ https://www.ncbi.nlm.nih.gov/pubmed/36142039 http://dx.doi.org/10.3390/ijerph191811768 |
_version_ | 1784798858144907264 |
---|---|
author | Dai, Yunzhe Li, Xiangmei Wang, Dan Wang, Yayun |
author_facet | Dai, Yunzhe Li, Xiangmei Wang, Dan Wang, Yayun |
author_sort | Dai, Yunzhe |
collection | PubMed |
description | The development of traffic infrastructure involves massive land use changes along the transportation routes and stimulates urban sprawl at transfer nodes, leading to a degradation in ecosystem services, including soil conservation. For developing countries, especially for China, it is very important to differentiate the influences between different standards of traffic infrastructure associated with the different administrative levels of the regions where they are constructed on soil conservation. In this study, we attempt to analyze the differences in the influence of accessibility at different levels on soil conservation, for the case study area in Hunan province in China. The results indicate that: (1) traffic conditions in Hunan province have witnessed continuous improvement, and the time taken to access mega-cities, prefecture-level cities, and county-level cities from various regions has been significantly reduced. (2) The total annual soil conservation in Hunan province is maintained at approximately 2.93 × 10(9) t. However, the spatial heterogeneity shows severe degradation in regions with lower accessibility, and weak enhancement in regions with higher accessibility. (3) A negative spatial autocorrelationship exists between accessibility and soil conservation at all levels, with the increase of administrative rank of the destination making it more obvious and intense, along with an increased tendency for the spatial distribution to concentrate. (4) Building more railways and highways from prefecture-level cities with LH clusters nearby as transfer nodes, instead of the construction of national roads and provincial roads that diverge from these railways and highways, will help limit the massive expansion of construction land and soil erosion within prefecture-level cities, rather than spreading to towns of LH clusters. This research provides an important scientific basis for future regional planning and traffic infrastructure construction, and also a reference for traffic infrastructure development in other geographically similar regions on a synchronous development stage in the world. |
format | Online Article Text |
id | pubmed-9517110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95171102022-09-29 Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province Dai, Yunzhe Li, Xiangmei Wang, Dan Wang, Yayun Int J Environ Res Public Health Article The development of traffic infrastructure involves massive land use changes along the transportation routes and stimulates urban sprawl at transfer nodes, leading to a degradation in ecosystem services, including soil conservation. For developing countries, especially for China, it is very important to differentiate the influences between different standards of traffic infrastructure associated with the different administrative levels of the regions where they are constructed on soil conservation. In this study, we attempt to analyze the differences in the influence of accessibility at different levels on soil conservation, for the case study area in Hunan province in China. The results indicate that: (1) traffic conditions in Hunan province have witnessed continuous improvement, and the time taken to access mega-cities, prefecture-level cities, and county-level cities from various regions has been significantly reduced. (2) The total annual soil conservation in Hunan province is maintained at approximately 2.93 × 10(9) t. However, the spatial heterogeneity shows severe degradation in regions with lower accessibility, and weak enhancement in regions with higher accessibility. (3) A negative spatial autocorrelationship exists between accessibility and soil conservation at all levels, with the increase of administrative rank of the destination making it more obvious and intense, along with an increased tendency for the spatial distribution to concentrate. (4) Building more railways and highways from prefecture-level cities with LH clusters nearby as transfer nodes, instead of the construction of national roads and provincial roads that diverge from these railways and highways, will help limit the massive expansion of construction land and soil erosion within prefecture-level cities, rather than spreading to towns of LH clusters. This research provides an important scientific basis for future regional planning and traffic infrastructure construction, and also a reference for traffic infrastructure development in other geographically similar regions on a synchronous development stage in the world. MDPI 2022-09-18 /pmc/articles/PMC9517110/ /pubmed/36142039 http://dx.doi.org/10.3390/ijerph191811768 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dai, Yunzhe Li, Xiangmei Wang, Dan Wang, Yayun Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province |
title | Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province |
title_full | Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province |
title_fullStr | Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province |
title_full_unstemmed | Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province |
title_short | Impact of Accessibility to Cities at Multiple Administrative Levels on Soil Conservation: A Case Study of Hunan Province |
title_sort | impact of accessibility to cities at multiple administrative levels on soil conservation: a case study of hunan province |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517110/ https://www.ncbi.nlm.nih.gov/pubmed/36142039 http://dx.doi.org/10.3390/ijerph191811768 |
work_keys_str_mv | AT daiyunzhe impactofaccessibilitytocitiesatmultipleadministrativelevelsonsoilconservationacasestudyofhunanprovince AT lixiangmei impactofaccessibilitytocitiesatmultipleadministrativelevelsonsoilconservationacasestudyofhunanprovince AT wangdan impactofaccessibilitytocitiesatmultipleadministrativelevelsonsoilconservationacasestudyofhunanprovince AT wangyayun impactofaccessibilitytocitiesatmultipleadministrativelevelsonsoilconservationacasestudyofhunanprovince |