Cargando…
Divergent Effects of Factors on Crash Severity under Autonomous and Conventional Driving Modes Using a Hierarchical Bayesian Approach
Influencing factors on crash severity involved with autonomous vehicles (AVs) have been paid increasing attention. However, there is a lack of comparative analyses of those factors between AVs and human-driven vehicles. To fill this research gap, the study aims to explore the divergent effects of fa...
Autores principales: | Ren, Weixi, Yu, Bo, Chen, Yuren, Gao, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517422/ https://www.ncbi.nlm.nih.gov/pubmed/36141640 http://dx.doi.org/10.3390/ijerph191811358 |
Ejemplares similares
-
Application of Machine Learning in Ethical Design of Autonomous Driving Crash Algorithms
por: Xiao, Yineng
Publicado: (2022) -
Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis
por: Hevelke, Alexander, et al.
Publicado: (2014) -
Comparative Analysis of Influencing Factors on Crash Severity between Super Multi-Lane and Traditional Multi-Lane Freeways Considering Spatial Heterogeneity
por: Zhang, Junxiang, et al.
Publicado: (2022) -
ARDformer: Agroforestry Road Detection for Autonomous Driving Using Hierarchical Transformer
por: Firkat, Eksan, et al.
Publicado: (2022) -
A Bayesian Surprise Approach in Designing Cognitive Radar for Autonomous Driving
por: Zamiri-Jafarian, Yeganeh, et al.
Publicado: (2022)