Cargando…
Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree
Epilepsy is a common neurological disorder with sudden and recurrent seizures. Early prediction of seizures and effective intervention can significantly reduce the harm suffered by patients. In this paper, a method based on nonlinear features of EEG signal and gradient boosting decision tree (GBDT)...
Autores principales: | Xu, Xin, Lin, Maokun, Xu, Tingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517630/ https://www.ncbi.nlm.nih.gov/pubmed/36141613 http://dx.doi.org/10.3390/ijerph191811326 |
Ejemplares similares
-
Epileptic seizure detection using EEG signals and extreme gradient boosting
por: Vanabelle, Paul, et al.
Publicado: (2020) -
Automatic Recognition of High-Density Epileptic EEG Using Support Vector Machine and Gradient-Boosting Decision Tree
por: He, Jiaxiu, et al.
Publicado: (2022) -
Detecting Epileptic Seizures in EEG Signals with Complementary Ensemble Empirical Mode Decomposition and Extreme Gradient Boosting
por: Wu, Jiang, et al.
Publicado: (2020) -
A Hyperspectral Image Classification Approach Based on Feature Fusion and Multi-Layered Gradient Boosting Decision Trees
por: Xu, Shenyuan, et al.
Publicado: (2020) -
Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection
por: Adler, Afek Ilay, et al.
Publicado: (2022)