Cargando…
Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction
Recent evolution in the field of data science has revealed the potential utility of machine learning (ML) applied to criminal justice. Hence, the literature focused on finding better techniques to predict criminal recidivism risk is rapidly flourishing. However, it is difficult to make a state of th...
Autores principales: | Travaini, Guido Vittorio, Pacchioni, Federico, Bellumore, Silvia, Bosia, Marta, De Micco, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517748/ https://www.ncbi.nlm.nih.gov/pubmed/36078307 http://dx.doi.org/10.3390/ijerph191710594 |
Ejemplares similares
-
Substance Use, Criminal Recidivism, and Mortality in Criminal Justice Clients: A Comparison between Men and Women
por: Mannerfelt, Caroline, et al.
Publicado: (2018) -
Crime-Specific Recidivism in Criminal Justice Clients with Substance Use—A Cohort Study
por: Karlsson, Anna, et al.
Publicado: (2022) -
Effect of Marriage and Spousal Criminality on Recidivism
por: Andersen, Signe Hald, et al.
Publicado: (2015) -
Machine learning risk assessments in criminal justice settings
por: Berk, Richard
Publicado: (2018) -
Criminal characteristics of a group of primary criminals diagnosed with aspd: approach to criminal recidivism
por: Larrotta-Castillo, R., et al.
Publicado: (2017)