Cargando…

Disposable E-Cigarettes and Associated Health Risks: An Experimental Study

The use of electronic nicotine delivery systems (ENDS), including disposable e-cigarettes, has been prevalent. Existing chemical analyses of ENDS focused on e-liquids rather than aerosols and failed to consider particle sizes and aerosol respiratory deposition fractions, which are key factors for in...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Hsien-Chang, Buu, Anne, Su, Wei-Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518067/
https://www.ncbi.nlm.nih.gov/pubmed/36078349
http://dx.doi.org/10.3390/ijerph191710633
Descripción
Sumario:The use of electronic nicotine delivery systems (ENDS), including disposable e-cigarettes, has been prevalent. Existing chemical analyses of ENDS focused on e-liquids rather than aerosols and failed to consider particle sizes and aerosol respiratory deposition fractions, which are key factors for inhalation doses. This study investigated the organic chemical and metal constituents in size-segregated ENDS aerosol and assessed the deposited doses and health risks of these substances. Aerosol chemical analyses were conducted on two popular disposable ENDS products: Puff Bar (Grape) and Air Bar (Watermelon Ice). An ENDS aerosol was generated and delivered into a Micro-Orifice Uniform Deposit Impactor to collect size-segregated aerosol samples, in which organic chemicals and metals were analyzed. Daily and lifetime doses for each chemical were estimated. Cancer and non-cancer risk assessments were conducted based on the deposited doses. We found that e-cigarette aerosol contains certain harmful organic chemicals and metals documented to result in respiratory problems. Estimated respiratory cancer risks corresponding to chromium from both ENDS products and nickel from Air Bar (Watermelon Ice) were substantially above the conventionally acceptable risk. The method, findings, and implications can contribute to the extant literature of ENDS toxicity studies as well as inform tobacco regulation and future large-scale studies.