Cargando…
Prediction of Duration of Traffic Incidents by Hybrid Deep Learning Based on Multi-Source Incomplete Data
Traffic accidents causing nonrecurrent congestion and road traffic injuries seriously affect public safety. It is helpful for traffic operation and management to predict the duration of traffic incidents. Most of the previous studies have been in a certain area with a single data source. This paper...
Autores principales: | Shang, Qiang, Xie, Tian, Yu, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518162/ https://www.ncbi.nlm.nih.gov/pubmed/36078617 http://dx.doi.org/10.3390/ijerph191710903 |
Ejemplares similares
-
A Hybrid Deep Learning Method for Early and Late Mild Cognitive Impairment Diagnosis With Incomplete Multimodal Data
por: Jin, Leiming, et al.
Publicado: (2022) -
A Novel Multisensor Traffic State Assessment System Based on Incomplete Data
por: Zeng, Yiliang, et al.
Publicado: (2014) -
Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning
por: Bouktif, Salah, et al.
Publicado: (2021) -
Deep Learning for Encrypted Traffic Classification and Unknown Data Detection
por: Pathmaperuma, Madushi H., et al.
Publicado: (2022) -
Traffic accident duration prediction using text mining and ensemble learning on expressways
por: Chen, Jiaona, et al.
Publicado: (2022)