Cargando…
Combining metaphase cytogenetics with single nucleotide polymorphism arrays can improve the diagnostic yield and identify prognosis more precisely in myelodysplastic syndromes
BACKGROUND: Myelodysplastic syndromes (MDS) encompass a group of heterogeneous haematopoietic stem cell malignancies characterised by ineffective haematopoiesis, cytological aberrations, and a propensity for progression to acute myeloid leukaemia. Diagnosis and disease prognostic stratification are...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518301/ https://www.ncbi.nlm.nih.gov/pubmed/36148999 http://dx.doi.org/10.1080/07853890.2022.2125173 |
Sumario: | BACKGROUND: Myelodysplastic syndromes (MDS) encompass a group of heterogeneous haematopoietic stem cell malignancies characterised by ineffective haematopoiesis, cytological aberrations, and a propensity for progression to acute myeloid leukaemia. Diagnosis and disease prognostic stratification are much based on genomic abnormalities. The traditional metaphase cytogenetics analysis (MC) can detect about 40–60% aberrations. Single-nucleotide polymorphism arrays (SNP-A) karyotyping can detect copy number variations with a higher resolution and has a unique advantage in detection of copy number neutral loss of heterozygosity (CN-LOH). Combining these two methods may improve the diagnostic efficiency and accuracy for MDS. METHODS: We retrospectively analysed the data of 110 MDS patients diagnosed from January 2012 to December 2019 to compare the detection yield of chromosomal abnormalities by MC with by SNP-A, and the relationship between chromosomal abnormalities and prognosis. RESULTS: Our results showed that SNP-A improved the detection yield of chromosomal aberrations compared with MC (74.5 vs. 55.5%, p < .001). In addition, the positive yield could be further improved by combining MC with SNP-A to 77.3%, compared with MC alone. Univariate analysis showed that age >65 years, bone marrow blasts ≥5%, with acquired CN-LOH, new aberrations detected by SNP-A, TGA value > the median (81.435 Mb), higher risk by IPSS-R-MC, higher risk by IPSS-R-SNP-A all had poorer prognosis. More critically, multivariable analysis showed that age >65 years and higher risk by IPSS-R-SNP-A were independent predictors of inferior OS in MDS patients. CONCLUSION: The combination of MC and SNP-A based karyotyping can further improve the diagnostic yield and provide more precise prognostic stratification in MDS patients. However, SNP-A may not completely replace MC because of its inability to detect balanced translocation and to detect different clones. From a practical point of view, we recommend the concurrent use of SNP-A and MC in the initial karyotypic evaluation for MDS patients on diagnosis and prognosis stratification. KEY MESSAGES: SNP-A based karyotyping can further improve the MDS diagnostic yield and provide more precise prognostic stratification in MDS patients. Acquired CN-LOH is a characteristic chromosomal aberration of MDS, which should be integrated to the diagnostic project of MDS. The concurrent use of SNP-A and MC in the initial karyotypic evaluation for MDS patients can be recommended. |
---|