Cargando…
Multi-Level Classification of Driver Drowsiness by Simultaneous Analysis of ECG and Respiration Signals Using Deep Neural Networks
The high number of fatal crashes caused by driver drowsiness highlights the need for developing reliable drowsiness detection methods. An ideal driver drowsiness detection system should estimate multiple levels of drowsiness accurately without intervening in the driving task. This paper proposes a m...
Autores principales: | Ebrahimian, Serajeddin, Nahvi, Ali, Tashakori, Masoumeh, Salmanzadeh, Hamed, Mohseni, Omid, Leppänen, Timo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518416/ https://www.ncbi.nlm.nih.gov/pubmed/36078452 http://dx.doi.org/10.3390/ijerph191710736 |
Ejemplares similares
-
An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data
por: Houshmand, Sara, et al.
Publicado: (2022) -
Data Fusion to Develop a Driver Drowsiness Detection System with Robustness to Signal Loss
por: Samiee, Sajjad, et al.
Publicado: (2014) -
Driver Drowsiness Detection Based on Steering Wheel Data Applying Adaptive Neuro-Fuzzy Feature Selection
por: Arefnezhad, Sadegh, et al.
Publicado: (2019) -
Presenting a model for dynamic facial expression changes in detecting drivers’ drowsiness
por: Karchani, Mohsen, et al.
Publicado: (2015) -
Non-Invasive Driver Drowsiness Detection System
por: Siddiqui, Hafeez Ur Rehman, et al.
Publicado: (2021)