Cargando…
PM(2.5) Concentrations Variability in North China Explored with a Multi-Scale Spatial Random Effect Model
Compiling fine-resolution geospatial PM(2.5) concentrations data is essential for precisely assessing the health risks of PM(2.5) pollution exposure as well as for evaluating environmental policy effectiveness. In most previous studies, global and local spatial heterogeneity of PM(2.5) is captured b...
Autores principales: | Zhang, Hang, Liu, Yong, Yang, Dongyang, Dong, Guanpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518430/ https://www.ncbi.nlm.nih.gov/pubmed/36078527 http://dx.doi.org/10.3390/ijerph191710811 |
Ejemplares similares
-
Spatial and seasonal variability of the mass concentration and chemical composition of PM(2.5) in Poland
por: Rogula-Kozłowska, Wioletta, et al.
Publicado: (2013) -
Spatial Variation of the Relationship between PM(2.5) Concentrations and Meteorological Parameters in China
por: Lin, Gang, et al.
Publicado: (2015) -
Temporal and Spatial Features of the Correlation between PM(2.5) and O(3) Concentrations in China
por: Chen, Jiajia, et al.
Publicado: (2019) -
Effects of transboundary PM(2.5) transported from China on the regional PM(2.5) concentrations in South Korea: A spatial panel-data analysis
por: Jun, Myung-Jin, et al.
Publicado: (2023) -
Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network
por: Wang, Weilin, et al.
Publicado: (2019)