Cargando…
Full-text chemical identification with improved generalizability and tagging consistency
Chemical identification involves finding chemical entities in text (i.e. named entity recognition) and assigning unique identifiers to the entities (i.e. named entity normalization). While current models are developed and evaluated based on article titles and abstracts, their effectiveness has not b...
Autores principales: | Kim, Hyunjae, Sung, Mujeen, Yoon, Wonjin, Park, Sungjoon, Kang, Jaewoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518746/ https://www.ncbi.nlm.nih.gov/pubmed/36170114 http://dx.doi.org/10.1093/database/baac074 |
Ejemplares similares
-
Sequence tagging for biomedical extractive question answering
por: Yoon, Wonjin, et al.
Publicado: (2022) -
Biomedical relation extraction with knowledge base–refined weak supervision
por: Yoon, Wonjin, et al.
Publicado: (2023) -
Enhancing the interpretability of transcription factor binding site prediction using attention mechanism
por: Park, Sungjoon, et al.
Publicado: (2020) -
Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation
por: Park, Yae Won, et al.
Publicado: (2022) -
BERN2: an advanced neural biomedical named entity recognition and normalization tool
por: Sung, Mujeen, et al.
Publicado: (2022)