Cargando…
A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography
Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis. Since manual landmarking from 3D computed tomography (CT) images is a cumbersome task even for the trained experts, automatic 3D landmark detection system i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518928/ https://www.ncbi.nlm.nih.gov/pubmed/36170279 http://dx.doi.org/10.1371/journal.pone.0275114 |
_version_ | 1784799293465427968 |
---|---|
author | Yun, Hye Sun Hyun, Chang Min Baek, Seong Hyeon Lee, Sang-Hwy Seo, Jin Keun |
author_facet | Yun, Hye Sun Hyun, Chang Min Baek, Seong Hyeon Lee, Sang-Hwy Seo, Jin Keun |
author_sort | Yun, Hye Sun |
collection | PubMed |
description | Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis. Since manual landmarking from 3D computed tomography (CT) images is a cumbersome task even for the trained experts, automatic 3D landmark detection system is in a great need. Recently, automatic landmarking of 2D cephalograms using deep learning (DL) has achieved great success, but 3D landmarking for more than 80 landmarks has not yet reached a satisfactory level, because of the factors hindering machine learning such as the high dimensionality of the input data and limited amount of training data due to the ethical restrictions on the use of medical data. This paper presents a semi-supervised DL method for 3D landmarking that takes advantage of anonymized landmark dataset with paired CT data being removed. The proposed method first detects a small number of easy-to-find reference landmarks, then uses them to provide a rough estimation of the all landmarks by utilizing the low dimensional representation learned by variational autoencoder (VAE). The anonymized landmark dataset is used for training the VAE. Finally, coarse-to-fine detection is applied to the small bounding box provided by rough estimation, using separate strategies suitable for the mandible and the cranium. For mandibular landmarks, patch-based 3D CNN is applied to the segmented image of the mandible (separated from the maxilla), in order to capture 3D morphological features of mandible associated with the landmarks. We detect 6 landmarks around the condyle all at once rather than one by one, because they are closely related to each other. For cranial landmarks, we again use the VAE-based latent representation for more accurate annotation. In our experiment, the proposed method achieved a mean detection error of 2.88 mm for 90 landmarks using only 15 paired training data. |
format | Online Article Text |
id | pubmed-9518928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95189282022-09-29 A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography Yun, Hye Sun Hyun, Chang Min Baek, Seong Hyeon Lee, Sang-Hwy Seo, Jin Keun PLoS One Research Article Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis. Since manual landmarking from 3D computed tomography (CT) images is a cumbersome task even for the trained experts, automatic 3D landmark detection system is in a great need. Recently, automatic landmarking of 2D cephalograms using deep learning (DL) has achieved great success, but 3D landmarking for more than 80 landmarks has not yet reached a satisfactory level, because of the factors hindering machine learning such as the high dimensionality of the input data and limited amount of training data due to the ethical restrictions on the use of medical data. This paper presents a semi-supervised DL method for 3D landmarking that takes advantage of anonymized landmark dataset with paired CT data being removed. The proposed method first detects a small number of easy-to-find reference landmarks, then uses them to provide a rough estimation of the all landmarks by utilizing the low dimensional representation learned by variational autoencoder (VAE). The anonymized landmark dataset is used for training the VAE. Finally, coarse-to-fine detection is applied to the small bounding box provided by rough estimation, using separate strategies suitable for the mandible and the cranium. For mandibular landmarks, patch-based 3D CNN is applied to the segmented image of the mandible (separated from the maxilla), in order to capture 3D morphological features of mandible associated with the landmarks. We detect 6 landmarks around the condyle all at once rather than one by one, because they are closely related to each other. For cranial landmarks, we again use the VAE-based latent representation for more accurate annotation. In our experiment, the proposed method achieved a mean detection error of 2.88 mm for 90 landmarks using only 15 paired training data. Public Library of Science 2022-09-28 /pmc/articles/PMC9518928/ /pubmed/36170279 http://dx.doi.org/10.1371/journal.pone.0275114 Text en © 2022 Yun et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yun, Hye Sun Hyun, Chang Min Baek, Seong Hyeon Lee, Sang-Hwy Seo, Jin Keun A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography |
title | A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography |
title_full | A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography |
title_fullStr | A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography |
title_full_unstemmed | A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography |
title_short | A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography |
title_sort | semi-supervised learning approach for automated 3d cephalometric landmark identification using computed tomography |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518928/ https://www.ncbi.nlm.nih.gov/pubmed/36170279 http://dx.doi.org/10.1371/journal.pone.0275114 |
work_keys_str_mv | AT yunhyesun asemisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT hyunchangmin asemisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT baekseonghyeon asemisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT leesanghwy asemisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT seojinkeun asemisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT yunhyesun semisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT hyunchangmin semisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT baekseonghyeon semisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT leesanghwy semisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography AT seojinkeun semisupervisedlearningapproachforautomated3dcephalometriclandmarkidentificationusingcomputedtomography |