Cargando…
A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography
Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis. Since manual landmarking from 3D computed tomography (CT) images is a cumbersome task even for the trained experts, automatic 3D landmark detection system i...
Autores principales: | Yun, Hye Sun, Hyun, Chang Min, Baek, Seong Hyeon, Lee, Sang-Hwy, Seo, Jin Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518928/ https://www.ncbi.nlm.nih.gov/pubmed/36170279 http://dx.doi.org/10.1371/journal.pone.0275114 |
Ejemplares similares
-
3D cephalometric landmark detection by multiple stage deep reinforcement learning
por: Kang, Sung Ho, et al.
Publicado: (2021) -
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021) -
Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
por: Lee, Jeong-Hoon, et al.
Publicado: (2020) -
Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis
por: Serafin, Marco, et al.
Publicado: (2023)