Cargando…

The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs

We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lakhani, Paras, Mongan, J., Singhal, C., Zhou, Q., Andriole, K. P., Auffermann, W. F., Prasanna, P. M., Pham, T. X., Peterson, Michael, Bergquist, P. J., Cook, T. S., Ferraciolli, S. F., Corradi, G. C. A., Takahashi, MS, Workman, C. S., Parekh, M., Kamel, S. I., Galant, J., Mas-Sanchez, A., Benítez, E. C., Sánchez-Valverde, M., Jaques, L., Panadero, M., Vidal, M., Culiañez-Casas, M., Angulo-Gonzalez, D., Langer, S. G., de la Iglesia-Vayá, María, Shih, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518934/
https://www.ncbi.nlm.nih.gov/pubmed/36171520
http://dx.doi.org/10.1007/s10278-022-00706-8
Descripción
Sumario:We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusive categories, including “typical,” “indeterminate,” and “atypical appearance” for COVID-19, or “negative for pneumonia,” adapted from previously published guidelines, and bounding boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic and noncommercial use.