Cargando…
The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs
We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518934/ https://www.ncbi.nlm.nih.gov/pubmed/36171520 http://dx.doi.org/10.1007/s10278-022-00706-8 |
_version_ | 1784799294508761088 |
---|---|
author | Lakhani, Paras Mongan, J. Singhal, C. Zhou, Q. Andriole, K. P. Auffermann, W. F. Prasanna, P. M. Pham, T. X. Peterson, Michael Bergquist, P. J. Cook, T. S. Ferraciolli, S. F. Corradi, G. C. A. Takahashi, MS Workman, C. S. Parekh, M. Kamel, S. I. Galant, J. Mas-Sanchez, A. Benítez, E. C. Sánchez-Valverde, M. Jaques, L. Panadero, M. Vidal, M. Culiañez-Casas, M. Angulo-Gonzalez, D. Langer, S. G. de la Iglesia-Vayá, María Shih, G. |
author_facet | Lakhani, Paras Mongan, J. Singhal, C. Zhou, Q. Andriole, K. P. Auffermann, W. F. Prasanna, P. M. Pham, T. X. Peterson, Michael Bergquist, P. J. Cook, T. S. Ferraciolli, S. F. Corradi, G. C. A. Takahashi, MS Workman, C. S. Parekh, M. Kamel, S. I. Galant, J. Mas-Sanchez, A. Benítez, E. C. Sánchez-Valverde, M. Jaques, L. Panadero, M. Vidal, M. Culiañez-Casas, M. Angulo-Gonzalez, D. Langer, S. G. de la Iglesia-Vayá, María Shih, G. |
author_sort | Lakhani, Paras |
collection | PubMed |
description | We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusive categories, including “typical,” “indeterminate,” and “atypical appearance” for COVID-19, or “negative for pneumonia,” adapted from previously published guidelines, and bounding boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic and noncommercial use. |
format | Online Article Text |
id | pubmed-9518934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-95189342022-09-29 The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs Lakhani, Paras Mongan, J. Singhal, C. Zhou, Q. Andriole, K. P. Auffermann, W. F. Prasanna, P. M. Pham, T. X. Peterson, Michael Bergquist, P. J. Cook, T. S. Ferraciolli, S. F. Corradi, G. C. A. Takahashi, MS Workman, C. S. Parekh, M. Kamel, S. I. Galant, J. Mas-Sanchez, A. Benítez, E. C. Sánchez-Valverde, M. Jaques, L. Panadero, M. Vidal, M. Culiañez-Casas, M. Angulo-Gonzalez, D. Langer, S. G. de la Iglesia-Vayá, María Shih, G. J Digit Imaging Article We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusive categories, including “typical,” “indeterminate,” and “atypical appearance” for COVID-19, or “negative for pneumonia,” adapted from previously published guidelines, and bounding boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic and noncommercial use. Springer International Publishing 2022-09-28 2023-02 /pmc/articles/PMC9518934/ /pubmed/36171520 http://dx.doi.org/10.1007/s10278-022-00706-8 Text en © The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
spellingShingle | Article Lakhani, Paras Mongan, J. Singhal, C. Zhou, Q. Andriole, K. P. Auffermann, W. F. Prasanna, P. M. Pham, T. X. Peterson, Michael Bergquist, P. J. Cook, T. S. Ferraciolli, S. F. Corradi, G. C. A. Takahashi, MS Workman, C. S. Parekh, M. Kamel, S. I. Galant, J. Mas-Sanchez, A. Benítez, E. C. Sánchez-Valverde, M. Jaques, L. Panadero, M. Vidal, M. Culiañez-Casas, M. Angulo-Gonzalez, D. Langer, S. G. de la Iglesia-Vayá, María Shih, G. The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs |
title | The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs |
title_full | The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs |
title_fullStr | The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs |
title_full_unstemmed | The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs |
title_short | The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs |
title_sort | 2021 siim-fisabio-rsna machine learning covid-19 challenge: annotation and standard exam classification of covid-19 chest radiographs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518934/ https://www.ncbi.nlm.nih.gov/pubmed/36171520 http://dx.doi.org/10.1007/s10278-022-00706-8 |
work_keys_str_mv | AT lakhaniparas the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT monganj the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT singhalc the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT zhouq the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT andriolekp the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT auffermannwf the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT prasannapm the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT phamtx the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT petersonmichael the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT bergquistpj the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT cookts the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT ferraciollisf the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT corradigca the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT takahashims the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT workmancs the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT parekhm the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT kamelsi the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT galantj the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT massancheza the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT benitezec the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT sanchezvalverdem the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT jaquesl the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT panaderom the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT vidalm the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT culianezcasasm the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT angulogonzalezd the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT langersg the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT delaiglesiavayamaria the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT shihg the2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT lakhaniparas 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT monganj 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT singhalc 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT zhouq 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT andriolekp 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT auffermannwf 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT prasannapm 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT phamtx 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT petersonmichael 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT bergquistpj 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT cookts 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT ferraciollisf 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT corradigca 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT takahashims 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT workmancs 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT parekhm 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT kamelsi 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT galantj 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT massancheza 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT benitezec 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT sanchezvalverdem 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT jaquesl 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT panaderom 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT vidalm 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT culianezcasasm 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT angulogonzalezd 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT langersg 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT delaiglesiavayamaria 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs AT shihg 2021siimfisabiorsnamachinelearningcovid19challengeannotationandstandardexamclassificationofcovid19chestradiographs |