Cargando…
Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production
In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceive...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519152/ https://www.ncbi.nlm.nih.gov/pubmed/36107481 http://dx.doi.org/10.7554/eLife.79153 |
_version_ | 1784799332236525568 |
---|---|
author | Lee, Seok Hee Liu, Xiaowei Jimenez-Morales, David Rinaudo, Paolo F |
author_facet | Lee, Seok Hee Liu, Xiaowei Jimenez-Morales, David Rinaudo, Paolo F |
author_sort | Lee, Seok Hee |
collection | PubMed |
description | In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and cultured in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocysts manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of lactate dehydrogenase-B and monocarboxylate transporter 1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in the tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism are a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease. |
format | Online Article Text |
id | pubmed-9519152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-95191522022-09-29 Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production Lee, Seok Hee Liu, Xiaowei Jimenez-Morales, David Rinaudo, Paolo F eLife Developmental Biology In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and cultured in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocysts manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of lactate dehydrogenase-B and monocarboxylate transporter 1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in the tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism are a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease. eLife Sciences Publications, Ltd 2022-09-15 /pmc/articles/PMC9519152/ /pubmed/36107481 http://dx.doi.org/10.7554/eLife.79153 Text en © 2022, Lee et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Developmental Biology Lee, Seok Hee Liu, Xiaowei Jimenez-Morales, David Rinaudo, Paolo F Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production |
title | Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production |
title_full | Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production |
title_fullStr | Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production |
title_full_unstemmed | Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production |
title_short | Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production |
title_sort | murine blastocysts generated by in vitro fertilization show increased warburg metabolism and altered lactate production |
topic | Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519152/ https://www.ncbi.nlm.nih.gov/pubmed/36107481 http://dx.doi.org/10.7554/eLife.79153 |
work_keys_str_mv | AT leeseokhee murineblastocystsgeneratedbyinvitrofertilizationshowincreasedwarburgmetabolismandalteredlactateproduction AT liuxiaowei murineblastocystsgeneratedbyinvitrofertilizationshowincreasedwarburgmetabolismandalteredlactateproduction AT jimenezmoralesdavid murineblastocystsgeneratedbyinvitrofertilizationshowincreasedwarburgmetabolismandalteredlactateproduction AT rinaudopaolof murineblastocystsgeneratedbyinvitrofertilizationshowincreasedwarburgmetabolismandalteredlactateproduction |