Cargando…

A Deep Spiking Neural Network Anomaly Detection Method

Cyber-attacks on specialized industrial control systems are increasing in frequency and sophistication, which means stronger countermeasures need to be implemented, requiring the designers of the equipment in question to re-evaluate and redefine their methods for actively protecting against advanced...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Lixia, Liu, Ya, Qiu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519283/
https://www.ncbi.nlm.nih.gov/pubmed/36188675
http://dx.doi.org/10.1155/2022/6391750
_version_ 1784799360841678848
author Hu, Lixia
Liu, Ya
Qiu, Wei
author_facet Hu, Lixia
Liu, Ya
Qiu, Wei
author_sort Hu, Lixia
collection PubMed
description Cyber-attacks on specialized industrial control systems are increasing in frequency and sophistication, which means stronger countermeasures need to be implemented, requiring the designers of the equipment in question to re-evaluate and redefine their methods for actively protecting against advanced mass cyber-attacks. The attacks in question have huge motivations, ranging from corporate espionage to political targets, but in any case, they have a substantial financial impact and severe real-world implications. It should also be said that it is challenging to defend against cyber threats because a single point of entry can be enough to destroy an entire organization or put it out of business. This paper examines threats to the digital security of vibration monitoring systems used in petroleum infrastructure protection services, such as pipelines, pumps, and tank farms, where malicious interventions can cause explosions, fires, or toxic releases, with incalculable economic and environmental consequences. Specifically, a deep spiking neural network anomaly detection method is presented, which models the spike sequences and the internal presentation mechanisms of the information to discover with very high accuracy anomalies in vibration analysis systems used in oil infrastructure protection services. This is achieved by simulating the complex structures of the human brain and the way neural information is processed and transmitted. This work uses a particularly innovative form of the Galves–Löcherbach Spiking Model (GLSM) [1], which is a spiking neural network model with intrinsic stochasticity, ideal for modeling complex spatiotemporal situations, which is enhanced with possibilities of exploiting confidence intervals by modeling optimally stochastic variable-length memory chains that have a finite state space.
format Online
Article
Text
id pubmed-9519283
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-95192832022-09-29 A Deep Spiking Neural Network Anomaly Detection Method Hu, Lixia Liu, Ya Qiu, Wei Comput Intell Neurosci Research Article Cyber-attacks on specialized industrial control systems are increasing in frequency and sophistication, which means stronger countermeasures need to be implemented, requiring the designers of the equipment in question to re-evaluate and redefine their methods for actively protecting against advanced mass cyber-attacks. The attacks in question have huge motivations, ranging from corporate espionage to political targets, but in any case, they have a substantial financial impact and severe real-world implications. It should also be said that it is challenging to defend against cyber threats because a single point of entry can be enough to destroy an entire organization or put it out of business. This paper examines threats to the digital security of vibration monitoring systems used in petroleum infrastructure protection services, such as pipelines, pumps, and tank farms, where malicious interventions can cause explosions, fires, or toxic releases, with incalculable economic and environmental consequences. Specifically, a deep spiking neural network anomaly detection method is presented, which models the spike sequences and the internal presentation mechanisms of the information to discover with very high accuracy anomalies in vibration analysis systems used in oil infrastructure protection services. This is achieved by simulating the complex structures of the human brain and the way neural information is processed and transmitted. This work uses a particularly innovative form of the Galves–Löcherbach Spiking Model (GLSM) [1], which is a spiking neural network model with intrinsic stochasticity, ideal for modeling complex spatiotemporal situations, which is enhanced with possibilities of exploiting confidence intervals by modeling optimally stochastic variable-length memory chains that have a finite state space. Hindawi 2022-09-21 /pmc/articles/PMC9519283/ /pubmed/36188675 http://dx.doi.org/10.1155/2022/6391750 Text en Copyright © 2022 Lixia Hu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Hu, Lixia
Liu, Ya
Qiu, Wei
A Deep Spiking Neural Network Anomaly Detection Method
title A Deep Spiking Neural Network Anomaly Detection Method
title_full A Deep Spiking Neural Network Anomaly Detection Method
title_fullStr A Deep Spiking Neural Network Anomaly Detection Method
title_full_unstemmed A Deep Spiking Neural Network Anomaly Detection Method
title_short A Deep Spiking Neural Network Anomaly Detection Method
title_sort deep spiking neural network anomaly detection method
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519283/
https://www.ncbi.nlm.nih.gov/pubmed/36188675
http://dx.doi.org/10.1155/2022/6391750
work_keys_str_mv AT hulixia adeepspikingneuralnetworkanomalydetectionmethod
AT liuya adeepspikingneuralnetworkanomalydetectionmethod
AT qiuwei adeepspikingneuralnetworkanomalydetectionmethod
AT hulixia deepspikingneuralnetworkanomalydetectionmethod
AT liuya deepspikingneuralnetworkanomalydetectionmethod
AT qiuwei deepspikingneuralnetworkanomalydetectionmethod