Cargando…
A Deep Spiking Neural Network Anomaly Detection Method
Cyber-attacks on specialized industrial control systems are increasing in frequency and sophistication, which means stronger countermeasures need to be implemented, requiring the designers of the equipment in question to re-evaluate and redefine their methods for actively protecting against advanced...
Autores principales: | Hu, Lixia, Liu, Ya, Qiu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519283/ https://www.ncbi.nlm.nih.gov/pubmed/36188675 http://dx.doi.org/10.1155/2022/6391750 |
Ejemplares similares
-
Retracted: A Deep Spiking Neural Network Anomaly Detection Method
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Anomaly Detection with Spiking Neural Networks
por: Borzyszkowski, Bartłomiej
Publicado: (2020) -
Detection of anomalies in cycling behavior with convolutional neural network and deep learning
por: Yaqoob, Shumayla, et al.
Publicado: (2023) -
Scalable and accurate method for neuronal ensemble detection in spiking neural networks
por: Herzog, Rubén, et al.
Publicado: (2021) -
Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks
por: Esmaeili, Fatemeh, et al.
Publicado: (2023)