Cargando…
Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs
The objective of this study is to improve traditional convolutional neural networks for more accurate children dental caries diagnosis on panoramic radiographs. A context aware convolutional neural network (CNN) is proposed by considering information among adjacent teeth, based on the fact that cari...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519291/ https://www.ncbi.nlm.nih.gov/pubmed/36188109 http://dx.doi.org/10.1155/2022/6029245 |
_version_ | 1784799362904227840 |
---|---|
author | Zhou, Xiaojie Yu, Guoxia Yin, Qiyue Liu, Yan Zhang, Zhiling Sun, Jie |
author_facet | Zhou, Xiaojie Yu, Guoxia Yin, Qiyue Liu, Yan Zhang, Zhiling Sun, Jie |
author_sort | Zhou, Xiaojie |
collection | PubMed |
description | The objective of this study is to improve traditional convolutional neural networks for more accurate children dental caries diagnosis on panoramic radiographs. A context aware convolutional neural network (CNN) is proposed by considering information among adjacent teeth, based on the fact that caries of teeth often affects each other due to the same growing environment. Specifically, when performing caries diagnosis on a tooth, information from its adjacent teeth will be collected and adaptively fused for final classification. Children panoramic radiographs of 210 patients with one or more caries and 94 patients without caries are utilized, among which there are a total of 6028 teeth with 3039 to be caries. The proposed context aware CNN outperforms typical CNN baseline with the accuracy, precision, recall, F1 score, and area-under-the-curve (AUC) being 0.8272, 0.8538, 0.8770, 0.8652, and 0.9005, respectively, showing potential to improve typical CNN instead of just copying them in previous works. Specially, the proposed method performs better than two five-year attending doctors for the second primary molar caries diagnosis. Considering the results obtained, it is beneficial to promote CNN based deep learning methods for assisting dentists for caries diagnosis in hospitals. |
format | Online Article Text |
id | pubmed-9519291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95192912022-09-29 Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs Zhou, Xiaojie Yu, Guoxia Yin, Qiyue Liu, Yan Zhang, Zhiling Sun, Jie Comput Math Methods Med Research Article The objective of this study is to improve traditional convolutional neural networks for more accurate children dental caries diagnosis on panoramic radiographs. A context aware convolutional neural network (CNN) is proposed by considering information among adjacent teeth, based on the fact that caries of teeth often affects each other due to the same growing environment. Specifically, when performing caries diagnosis on a tooth, information from its adjacent teeth will be collected and adaptively fused for final classification. Children panoramic radiographs of 210 patients with one or more caries and 94 patients without caries are utilized, among which there are a total of 6028 teeth with 3039 to be caries. The proposed context aware CNN outperforms typical CNN baseline with the accuracy, precision, recall, F1 score, and area-under-the-curve (AUC) being 0.8272, 0.8538, 0.8770, 0.8652, and 0.9005, respectively, showing potential to improve typical CNN instead of just copying them in previous works. Specially, the proposed method performs better than two five-year attending doctors for the second primary molar caries diagnosis. Considering the results obtained, it is beneficial to promote CNN based deep learning methods for assisting dentists for caries diagnosis in hospitals. Hindawi 2022-09-21 /pmc/articles/PMC9519291/ /pubmed/36188109 http://dx.doi.org/10.1155/2022/6029245 Text en Copyright © 2022 Xiaojie Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Xiaojie Yu, Guoxia Yin, Qiyue Liu, Yan Zhang, Zhiling Sun, Jie Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs |
title | Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs |
title_full | Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs |
title_fullStr | Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs |
title_full_unstemmed | Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs |
title_short | Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs |
title_sort | context aware convolutional neural network for children caries diagnosis on dental panoramic radiographs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519291/ https://www.ncbi.nlm.nih.gov/pubmed/36188109 http://dx.doi.org/10.1155/2022/6029245 |
work_keys_str_mv | AT zhouxiaojie contextawareconvolutionalneuralnetworkforchildrencariesdiagnosisondentalpanoramicradiographs AT yuguoxia contextawareconvolutionalneuralnetworkforchildrencariesdiagnosisondentalpanoramicradiographs AT yinqiyue contextawareconvolutionalneuralnetworkforchildrencariesdiagnosisondentalpanoramicradiographs AT liuyan contextawareconvolutionalneuralnetworkforchildrencariesdiagnosisondentalpanoramicradiographs AT zhangzhiling contextawareconvolutionalneuralnetworkforchildrencariesdiagnosisondentalpanoramicradiographs AT sunjie contextawareconvolutionalneuralnetworkforchildrencariesdiagnosisondentalpanoramicradiographs |