Cargando…

An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN

Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brai...

Descripción completa

Detalles Bibliográficos
Autores principales: Syamsundararao, Thalakola, Selvarani, A., Rathi, R., Vini Antony Grace, N., Selvaraj, D., Almutairi, Khalid M. A., Alonazi, Wadi B., Priyan, K. S. A., Mosissa, Ramata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519296/
https://www.ncbi.nlm.nih.gov/pubmed/36213561
http://dx.doi.org/10.1155/2022/1502934
_version_ 1784799364087021568
author Syamsundararao, Thalakola
Selvarani, A.
Rathi, R.
Vini Antony Grace, N.
Selvaraj, D.
Almutairi, Khalid M. A.
Alonazi, Wadi B.
Priyan, K. S. A.
Mosissa, Ramata
author_facet Syamsundararao, Thalakola
Selvarani, A.
Rathi, R.
Vini Antony Grace, N.
Selvaraj, D.
Almutairi, Khalid M. A.
Alonazi, Wadi B.
Priyan, K. S. A.
Mosissa, Ramata
author_sort Syamsundararao, Thalakola
collection PubMed
description Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brain's complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader's level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.
format Online
Article
Text
id pubmed-9519296
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-95192962022-10-07 An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN Syamsundararao, Thalakola Selvarani, A. Rathi, R. Vini Antony Grace, N. Selvaraj, D. Almutairi, Khalid M. A. Alonazi, Wadi B. Priyan, K. S. A. Mosissa, Ramata Contrast Media Mol Imaging Research Article Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brain's complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader's level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%. Hindawi 2022-09-21 /pmc/articles/PMC9519296/ /pubmed/36213561 http://dx.doi.org/10.1155/2022/1502934 Text en Copyright © 2022 Thalakola Syamsundararao et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Syamsundararao, Thalakola
Selvarani, A.
Rathi, R.
Vini Antony Grace, N.
Selvaraj, D.
Almutairi, Khalid M. A.
Alonazi, Wadi B.
Priyan, K. S. A.
Mosissa, Ramata
An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
title An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
title_full An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
title_fullStr An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
title_full_unstemmed An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
title_short An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
title_sort efficient signal processing algorithm for detecting abnormalities in eeg signal using cnn
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519296/
https://www.ncbi.nlm.nih.gov/pubmed/36213561
http://dx.doi.org/10.1155/2022/1502934
work_keys_str_mv AT syamsundararaothalakola anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT selvarania anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT rathir anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT viniantonygracen anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT selvarajd anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT almutairikhalidma anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT alonaziwadib anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT priyanksa anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT mosissaramata anefficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT syamsundararaothalakola efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT selvarania efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT rathir efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT viniantonygracen efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT selvarajd efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT almutairikhalidma efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT alonaziwadib efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT priyanksa efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn
AT mosissaramata efficientsignalprocessingalgorithmfordetectingabnormalitiesineegsignalusingcnn