Cargando…
An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brai...
Autores principales: | Syamsundararao, Thalakola, Selvarani, A., Rathi, R., Vini Antony Grace, N., Selvaraj, D., Almutairi, Khalid M. A., Alonazi, Wadi B., Priyan, K. S. A., Mosissa, Ramata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519296/ https://www.ncbi.nlm.nih.gov/pubmed/36213561 http://dx.doi.org/10.1155/2022/1502934 |
Ejemplares similares
-
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Recurrent Neural Networks for Feature Extraction from Dengue Fever
por: Daniel, Jackson, et al.
Publicado: (2022) -
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Shoeibi, Afshin, et al.
Publicado: (2021) -
A Multi-Column CNN Model for Emotion Recognition from EEG Signals
por: Yang, Heekyung, et al.
Publicado: (2019) -
Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
por: Wang, Xiashuang, et al.
Publicado: (2023)