Cargando…
Evaluation of the sex steroids mediated modulation of leucocyte immune responses in an ophidian Natrixpiscator
The immune-suppressive role of sex steroids in mammals is well documented, but information on other vertebrates is limited. The present study was planned to analyze the effect of testosterone and progesterone in the modulation of immune functions of leucocytes in a reptile, Natrix piscator. Reptiles...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519393/ https://www.ncbi.nlm.nih.gov/pubmed/36185818 http://dx.doi.org/10.1016/j.crphys.2022.09.003 |
Sumario: | The immune-suppressive role of sex steroids in mammals is well documented, but information on other vertebrates is limited. The present study was planned to analyze the effect of testosterone and progesterone in the modulation of immune functions of leucocytes in a reptile, Natrix piscator. Reptiles are unique organisms and this study is novel in that it provides an insight into immune-reproductive cross-talk in a reptile. Leucocytes were isolated from peripheral blood, cultured with different concentrations of testosterone and progesterone and different immune parameters like phagocytosis, superoxide production, and nitrite release were assessed. Lymphocytes were isolated and cell-mediated immunity was assessed through proliferation responses utilizing tetrazolium salt. Concentration-dependent suppressive effects of both the steroids on immune responses were observed. A differential suppressive effect of testosterone was also observed when a lymphocyte proliferation assay was studied. Using receptor antagonists such as cyproterone acetate and mifepristone restored the immune responses of cultured cells. It was summarized that gonadal steroids mediate a direct suppressive effect on innate and cell-mediated immune responses of blood immune cells. It was concluded that when gonadal steroids are high in reproductive seasons, the immune functions are suppressed to gain optimum reproductive success. |
---|