Cargando…
Time series-based PM(2.5) concentration prediction in Jing-Jin-Ji area using machine learning algorithm models
Globally all countries encounter air pollution problems along their development path. As a significant indicator of air quality, PM(2.5) concentration has long been proven to be affecting the population’s death rate. Machine learning algorithms proven to outperform traditional statistical approaches...
Autores principales: | Ma, Xin, Chen, Tengfei, Ge, Rubing, Cui, Caocao, Xu, Fan, Lv, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519508/ https://www.ncbi.nlm.nih.gov/pubmed/36185154 http://dx.doi.org/10.1016/j.heliyon.2022.e10691 |
Ejemplares similares
-
Detecting the causality influence of individual meteorological factors on local PM(2.5) concentration in the Jing-Jin-Ji region
por: Chen, Ziyue, et al.
Publicado: (2017) -
The future urban growth under policies and its ecological effect in the Jing-Jin-Ji area, China
por: Li, Nana, et al.
Publicado: (2021) -
The impact of new transportation modes on population distribution in Jing-Jin-Ji region of China
por: Wang, Lizhe, et al.
Publicado: (2018) -
Simulating highly disturbed vegetation distribution: the case of China’s Jing-Jin-Ji region
por: Yi, Sangui, et al.
Publicado: (2020) -
Yi Jin Jing
por: Jiménez Martín, Pedro J.