Cargando…
In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed
With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascul...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519670/ https://www.ncbi.nlm.nih.gov/pubmed/35704148 http://dx.doi.org/10.1007/s10456-022-09842-9 |
_version_ | 1784799451836055552 |
---|---|
author | Bonanini, Flavio Kurek, Dorota Previdi, Sara Nicolas, Arnaud Hendriks, Delilah de Ruiter, Sander Meyer, Marine Clapés Cabrer, Maria Dinkelberg, Roelof García, Silvia Bonilla Kramer, Bart Olivier, Thomas Hu, Huili López-Iglesias, Carmen Schavemaker, Frederik Walinga, Erik Dutta, Devanjali Queiroz, Karla Domansky, Karel Ronden, Bob Joore, Jos Lanz, Henriette L. Peters, Peter J. Trietsch, Sebastiaan J. Clevers, Hans Vulto, Paul |
author_facet | Bonanini, Flavio Kurek, Dorota Previdi, Sara Nicolas, Arnaud Hendriks, Delilah de Ruiter, Sander Meyer, Marine Clapés Cabrer, Maria Dinkelberg, Roelof García, Silvia Bonilla Kramer, Bart Olivier, Thomas Hu, Huili López-Iglesias, Carmen Schavemaker, Frederik Walinga, Erik Dutta, Devanjali Queiroz, Karla Domansky, Karel Ronden, Bob Joore, Jos Lanz, Henriette L. Peters, Peter J. Trietsch, Sebastiaan J. Clevers, Hans Vulto, Paul |
author_sort | Bonanini, Flavio |
collection | PubMed |
description | With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10456-022-09842-9. |
format | Online Article Text |
id | pubmed-9519670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-95196702022-09-30 In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed Bonanini, Flavio Kurek, Dorota Previdi, Sara Nicolas, Arnaud Hendriks, Delilah de Ruiter, Sander Meyer, Marine Clapés Cabrer, Maria Dinkelberg, Roelof García, Silvia Bonilla Kramer, Bart Olivier, Thomas Hu, Huili López-Iglesias, Carmen Schavemaker, Frederik Walinga, Erik Dutta, Devanjali Queiroz, Karla Domansky, Karel Ronden, Bob Joore, Jos Lanz, Henriette L. Peters, Peter J. Trietsch, Sebastiaan J. Clevers, Hans Vulto, Paul Angiogenesis Original Paper With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10456-022-09842-9. Springer Netherlands 2022-06-15 2022 /pmc/articles/PMC9519670/ /pubmed/35704148 http://dx.doi.org/10.1007/s10456-022-09842-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Paper Bonanini, Flavio Kurek, Dorota Previdi, Sara Nicolas, Arnaud Hendriks, Delilah de Ruiter, Sander Meyer, Marine Clapés Cabrer, Maria Dinkelberg, Roelof García, Silvia Bonilla Kramer, Bart Olivier, Thomas Hu, Huili López-Iglesias, Carmen Schavemaker, Frederik Walinga, Erik Dutta, Devanjali Queiroz, Karla Domansky, Karel Ronden, Bob Joore, Jos Lanz, Henriette L. Peters, Peter J. Trietsch, Sebastiaan J. Clevers, Hans Vulto, Paul In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
title | In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
title_full | In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
title_fullStr | In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
title_full_unstemmed | In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
title_short | In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
title_sort | in vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519670/ https://www.ncbi.nlm.nih.gov/pubmed/35704148 http://dx.doi.org/10.1007/s10456-022-09842-9 |
work_keys_str_mv | AT bonaniniflavio invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT kurekdorota invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT previdisara invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT nicolasarnaud invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT hendriksdelilah invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT deruitersander invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT meyermarine invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT clapescabrermaria invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT dinkelbergroelof invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT garciasilviabonilla invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT kramerbart invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT olivierthomas invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT huhuili invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT lopeziglesiascarmen invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT schavemakerfrederik invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT walingaerik invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT duttadevanjali invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT queirozkarla invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT domanskykarel invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT rondenbob invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT joorejos invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT lanzhenriettel invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT peterspeterj invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT trietschsebastiaanj invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT clevershans invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed AT vultopaul invitrograftingofhepaticspheroidsandorganoidsonamicrofluidicvascularbed |