Cargando…

Blind-noise image denoising with block-matching domain transformation filtering and improved guided filtering

The adaptive block size processing method in different image areas makes block-matching and 3D-filtering (BM3D) have a very good image denoising effect. Based on these observation, in this paper, we improve BM3D in three aspects: adaptive noise variance estimation, domain transformation filtering an...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Hongbin, Yin, Qingbo, Lu, Mingyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519739/
https://www.ncbi.nlm.nih.gov/pubmed/36171466
http://dx.doi.org/10.1038/s41598-022-20578-w
Descripción
Sumario:The adaptive block size processing method in different image areas makes block-matching and 3D-filtering (BM3D) have a very good image denoising effect. Based on these observation, in this paper, we improve BM3D in three aspects: adaptive noise variance estimation, domain transformation filtering and nonlinear filtering. First, we improve the noise-variance estimation method of principle component analysis using multilayer wavelet decomposition. Second, we propose compressive sensing based Gaussian sequence Hartley domain transform filtering to reduce noise. Finally, we perform edge-preserving smoothing on the preprocessed image using the guided filtering based on total variation. Experimental results show that the proposed denoising method can be competitive with many representative denoising methods on the evaluation criteria of PSNR. However, it is worth further research on the visual quality of denoised images.