Cargando…
Dual attention network for unsupervised medical image registration based on VoxelMorph
An accurate medical image registration is crucial in a variety of neuroscience and clinical studies. In this paper, we proposed a new unsupervised learning network, DAVoxelMorph to improve the accuracy of 3D deformable medical image registration. Based on the VoxelMorph model, our network presented...
Autores principales: | Li, Yong-xin, Tang, Hui, Wang, Wei, Zhang, Xiu-feng, Qu, Hang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519746/ https://www.ncbi.nlm.nih.gov/pubmed/36171468 http://dx.doi.org/10.1038/s41598-022-20589-7 |
Ejemplares similares
-
Learning the Effect of Registration Hyperparameters with HyperMorph
por: Hoopes, Andrew, et al.
Publicado: (2022) -
An Unsupervised 3D Image Registration Network for Brain MRI Deformable Registration
por: Huang, Min, et al.
Publicado: (2022) -
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images
por: Hoffmann, Malte, et al.
Publicado: (2022) -
Cortical surface registration using unsupervised learning
por: Cheng, Jieyu, et al.
Publicado: (2020) -
Edge-Aware Pyramidal Deformable Network for Unsupervised Registration of Brain MR Images
por: Cao, Yiqin, et al.
Publicado: (2021)