Cargando…

Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes

Due to the outstanding electron injection/transport capability of ZnO nanoparticles (NPs), quantum-dot light-emitting diodes (QLEDs) are commonly constructed by employing a hybrid device structure with ZnO electron-transporting layer and organic hole-transporting layer. However, the emission quenchi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dandan, Liu, Yan-Hua, Zhu, Lianqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519756/
https://www.ncbi.nlm.nih.gov/pubmed/36185385
http://dx.doi.org/10.1016/j.isci.2022.105111
Descripción
Sumario:Due to the outstanding electron injection/transport capability of ZnO nanoparticles (NPs), quantum-dot light-emitting diodes (QLEDs) are commonly constructed by employing a hybrid device structure with ZnO electron-transporting layer and organic hole-transporting layer. However, the emission quenching of quantum dots and excessive electron injection induced by ZnO NPs also limits the device efficiency and operational stability. Here, diethylenetriamine (DETA) molecules as the ligands are introduced to modify the surface of ZnO NPs, which not only passivate the surface defects of ZnO but also suppress the overwhelming electron injection in the QLED. As a result, the device based on the DETA-modified ZnO NPs exhibits a peak external quantum efficiency of 23.7%, corresponding to an enhancement factor of 129% in comparison with that of the device with as-synthesized ZnO as the electron-transporting layer. The easy and feasible strategy may also be applicable to other photoelectric devices, such as solar cells and photodetectors.