Cargando…
Selective connectivity enhances storage capacity in attractor models of memory function
Autoassociative neural networks provide a simple model of how memories can be stored through Hebbian synaptic plasticity as retrievable patterns of neural activity. Although progress has been made along the last decades in understanding the biological implementation of autoassociative networks, thei...
Autores principales: | Emina, Facundo, Kropff, Emilio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519847/ https://www.ncbi.nlm.nih.gov/pubmed/36185821 http://dx.doi.org/10.3389/fnsys.2022.983147 |
Ejemplares similares
-
Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression
por: Miller, Paul
Publicado: (2013) -
Episodic Memories: How do the Hippocampus and the Entorhinal Ring Attractors Cooperate to Create Them?
por: Kovács, Krisztián A.
Publicado: (2020) -
On the Maximum Storage Capacity of the Hopfield Model
por: Folli, Viola, et al.
Publicado: (2017) -
Memory Dynamics in Attractor Networks
por: Li, Guoqi, et al.
Publicado: (2015) -
Continuous attractors for dynamic memories
por: Spalla, Davide, et al.
Publicado: (2021)