Cargando…
A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO(3) (SrTiO(3):Al)-based photocatalyst decorated homogeneously with nan...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519874/ https://www.ncbi.nlm.nih.gov/pubmed/36171214 http://dx.doi.org/10.1038/s41467-022-33439-x |
_version_ | 1784799496929017856 |
---|---|
author | Suguro, Takuya Kishimoto, Fuminao Kariya, Nobuko Fukui, Tsuyoshi Nakabayashi, Mamiko Shibata, Naoya Takata, Tsuyoshi Domen, Kazunari Takanabe, Kazuhiro |
author_facet | Suguro, Takuya Kishimoto, Fuminao Kariya, Nobuko Fukui, Tsuyoshi Nakabayashi, Mamiko Shibata, Naoya Takata, Tsuyoshi Domen, Kazunari Takanabe, Kazuhiro |
author_sort | Suguro, Takuya |
collection | PubMed |
description | Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO(3) (SrTiO(3):Al)-based photocatalyst decorated homogeneously with nano-membrane TiO(x) or TaO(x) thin layers (<3 nm). Here, we show the hygroscopic nature of the metal (hydr)oxide layer provides liquid water reaction environment under vapor, thus achieving an AQY of 54 ± 4%, which is comparable to a liquid reaction. TiO(x) coated, CoOOH/Rh loaded SrTiO(3):Al photocatalyst works for over 100 h, under high pressure (0.3 MPa), and with no problems using simulated seawater as the water vapor supply source. This vapor feeding concept is innovative as a high-pressure-tolerant photoreactor and may have value for large-scale applications. It allows uniform distribution of the water reactant into the reactor system without the potential risk of removing photocatalyst powders and eluting some dissolved ions from the reactor. |
format | Online Article Text |
id | pubmed-9519874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-95198742022-09-30 A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting Suguro, Takuya Kishimoto, Fuminao Kariya, Nobuko Fukui, Tsuyoshi Nakabayashi, Mamiko Shibata, Naoya Takata, Tsuyoshi Domen, Kazunari Takanabe, Kazuhiro Nat Commun Article Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO(3) (SrTiO(3):Al)-based photocatalyst decorated homogeneously with nano-membrane TiO(x) or TaO(x) thin layers (<3 nm). Here, we show the hygroscopic nature of the metal (hydr)oxide layer provides liquid water reaction environment under vapor, thus achieving an AQY of 54 ± 4%, which is comparable to a liquid reaction. TiO(x) coated, CoOOH/Rh loaded SrTiO(3):Al photocatalyst works for over 100 h, under high pressure (0.3 MPa), and with no problems using simulated seawater as the water vapor supply source. This vapor feeding concept is innovative as a high-pressure-tolerant photoreactor and may have value for large-scale applications. It allows uniform distribution of the water reactant into the reactor system without the potential risk of removing photocatalyst powders and eluting some dissolved ions from the reactor. Nature Publishing Group UK 2022-09-28 /pmc/articles/PMC9519874/ /pubmed/36171214 http://dx.doi.org/10.1038/s41467-022-33439-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Suguro, Takuya Kishimoto, Fuminao Kariya, Nobuko Fukui, Tsuyoshi Nakabayashi, Mamiko Shibata, Naoya Takata, Tsuyoshi Domen, Kazunari Takanabe, Kazuhiro A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
title | A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
title_full | A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
title_fullStr | A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
title_full_unstemmed | A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
title_short | A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
title_sort | hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519874/ https://www.ncbi.nlm.nih.gov/pubmed/36171214 http://dx.doi.org/10.1038/s41467-022-33439-x |
work_keys_str_mv | AT sugurotakuya ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT kishimotofuminao ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT kariyanobuko ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT fukuitsuyoshi ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT nakabayashimamiko ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT shibatanaoya ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT takatatsuyoshi ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT domenkazunari ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT takanabekazuhiro ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT sugurotakuya hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT kishimotofuminao hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT kariyanobuko hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT fukuitsuyoshi hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT nakabayashimamiko hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT shibatanaoya hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT takatatsuyoshi hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT domenkazunari hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting AT takanabekazuhiro hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting |