Cargando…

A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting

Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO(3) (SrTiO(3):Al)-based photocatalyst decorated homogeneously with nan...

Descripción completa

Detalles Bibliográficos
Autores principales: Suguro, Takuya, Kishimoto, Fuminao, Kariya, Nobuko, Fukui, Tsuyoshi, Nakabayashi, Mamiko, Shibata, Naoya, Takata, Tsuyoshi, Domen, Kazunari, Takanabe, Kazuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519874/
https://www.ncbi.nlm.nih.gov/pubmed/36171214
http://dx.doi.org/10.1038/s41467-022-33439-x
_version_ 1784799496929017856
author Suguro, Takuya
Kishimoto, Fuminao
Kariya, Nobuko
Fukui, Tsuyoshi
Nakabayashi, Mamiko
Shibata, Naoya
Takata, Tsuyoshi
Domen, Kazunari
Takanabe, Kazuhiro
author_facet Suguro, Takuya
Kishimoto, Fuminao
Kariya, Nobuko
Fukui, Tsuyoshi
Nakabayashi, Mamiko
Shibata, Naoya
Takata, Tsuyoshi
Domen, Kazunari
Takanabe, Kazuhiro
author_sort Suguro, Takuya
collection PubMed
description Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO(3) (SrTiO(3):Al)-based photocatalyst decorated homogeneously with nano-membrane TiO(x) or TaO(x) thin layers (<3 nm). Here, we show the hygroscopic nature of the metal (hydr)oxide layer provides liquid water reaction environment under vapor, thus achieving an AQY of 54 ± 4%, which is comparable to a liquid reaction. TiO(x) coated, CoOOH/Rh loaded SrTiO(3):Al photocatalyst works for over 100 h, under high pressure (0.3 MPa), and with no problems using simulated seawater as the water vapor supply source. This vapor feeding concept is innovative as a high-pressure-tolerant photoreactor and may have value for large-scale applications. It allows uniform distribution of the water reactant into the reactor system without the potential risk of removing photocatalyst powders and eluting some dissolved ions from the reactor.
format Online
Article
Text
id pubmed-9519874
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95198742022-09-30 A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting Suguro, Takuya Kishimoto, Fuminao Kariya, Nobuko Fukui, Tsuyoshi Nakabayashi, Mamiko Shibata, Naoya Takata, Tsuyoshi Domen, Kazunari Takanabe, Kazuhiro Nat Commun Article Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO(3) (SrTiO(3):Al)-based photocatalyst decorated homogeneously with nano-membrane TiO(x) or TaO(x) thin layers (<3 nm). Here, we show the hygroscopic nature of the metal (hydr)oxide layer provides liquid water reaction environment under vapor, thus achieving an AQY of 54 ± 4%, which is comparable to a liquid reaction. TiO(x) coated, CoOOH/Rh loaded SrTiO(3):Al photocatalyst works for over 100 h, under high pressure (0.3 MPa), and with no problems using simulated seawater as the water vapor supply source. This vapor feeding concept is innovative as a high-pressure-tolerant photoreactor and may have value for large-scale applications. It allows uniform distribution of the water reactant into the reactor system without the potential risk of removing photocatalyst powders and eluting some dissolved ions from the reactor. Nature Publishing Group UK 2022-09-28 /pmc/articles/PMC9519874/ /pubmed/36171214 http://dx.doi.org/10.1038/s41467-022-33439-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Suguro, Takuya
Kishimoto, Fuminao
Kariya, Nobuko
Fukui, Tsuyoshi
Nakabayashi, Mamiko
Shibata, Naoya
Takata, Tsuyoshi
Domen, Kazunari
Takanabe, Kazuhiro
A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
title A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
title_full A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
title_fullStr A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
title_full_unstemmed A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
title_short A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
title_sort hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519874/
https://www.ncbi.nlm.nih.gov/pubmed/36171214
http://dx.doi.org/10.1038/s41467-022-33439-x
work_keys_str_mv AT sugurotakuya ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT kishimotofuminao ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT kariyanobuko ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT fukuitsuyoshi ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT nakabayashimamiko ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT shibatanaoya ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT takatatsuyoshi ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT domenkazunari ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT takanabekazuhiro ahygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT sugurotakuya hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT kishimotofuminao hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT kariyanobuko hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT fukuitsuyoshi hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT nakabayashimamiko hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT shibatanaoya hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT takatatsuyoshi hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT domenkazunari hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting
AT takanabekazuhiro hygroscopicnanomembranecoatingachievesefficientvaporfedphotocatalyticwatersplitting