Cargando…
Improvement of CZTSSe film quality and superstrate solar cell performance through optimized post-deposition annealing
Improving the performance of kesterite solar cells requires high-quality, defect-free CZTS(Se) films with a reduced number of secondary phases and impurities. Post-annealing of the CZTS films at high temperatures in a sulfur or selenium atmosphere is commonly used to improve the quality of the absor...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519875/ https://www.ncbi.nlm.nih.gov/pubmed/36171263 http://dx.doi.org/10.1038/s41598-022-20670-1 |
Sumario: | Improving the performance of kesterite solar cells requires high-quality, defect-free CZTS(Se) films with a reduced number of secondary phases and impurities. Post-annealing of the CZTS films at high temperatures in a sulfur or selenium atmosphere is commonly used to improve the quality of the absorbing material. However, annealing at high-temperatures can promote material decomposition, mainly due to the loss of volatile elements such as tin or sulfur. In this work, we investigate how the additional step of sulfurization at reduced temperatures affects the quality and performance of CZTSSe based solar cells. A comprehensive structural analysis using conventional and high resolution XRD as well as Raman spectroscopy revealed that the highest CZTSSe material quality with the lowest structural disorder and defect densities was obtained from the CZTS films pre-sulfurized at 420 °C. Furthermore, we demonstrate the possibility of using Sb(2)Se(3) as a buffer layer in the superstrate configuration of CZTSSe solar cells, which is possible alternative to replace commonly employed toxic CdS as a buffer layer. We show that the additional low-temperature selenization process and the successful use of Sb(2)Se(3) as a buffer layer could improve the performance of CZTSSe-based solar cells by up to 3.48%, with an average efficiency of 3.1%. |
---|