Cargando…
Application of machine learning in predicting oil rate decline for Bakken shale oil wells
Commercial reservoir simulators are required to solve discretized mass-balance equations. When the reservoir becomes heterogeneous and complex, more grid blocks can be used, which requires detailed and accurate reservoir information, for e.g. porosity, permeability, and other parameters that are not...
Autores principales: | Bhattacharyya, Subhrajyoti, Vyas, Aditya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519931/ https://www.ncbi.nlm.nih.gov/pubmed/36171237 http://dx.doi.org/10.1038/s41598-022-20401-6 |
Ejemplares similares
-
Prediction of fluid oil and gas volumes of shales with a deep learning model and its application to the Bakken and Marcellus shales
por: Şen, Şamil
Publicado: (2022) -
Price Responsiveness of Shale Oil: A Bakken Case Study
por: Vatter, Marc H., et al.
Publicado: (2022) -
Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite
por: An, Biwen A., et al.
Publicado: (2017) -
Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale
por: Tinker, Kara, et al.
Publicado: (2020) -
A novel methodology for fast reservoir simulation of single-phase gas reservoirs using machine learning
por: Bhattacharyya, Subhrajyoti, et al.
Publicado: (2022)