Cargando…
A deep learning approach for semantic segmentation of unbalanced data in electron tomography of catalytic materials
In computed TEM tomography, image segmentation represents one of the most basic tasks with implications not only for 3D volume visualization, but more importantly for quantitative 3D analysis. In case of large and complex 3D data sets, segmentation can be an extremely difficult and laborious task, a...
Autores principales: | Genc, Arda, Kovarik, Libor, Fraser, Hamish L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519981/ https://www.ncbi.nlm.nih.gov/pubmed/36171204 http://dx.doi.org/10.1038/s41598-022-16429-3 |
Ejemplares similares
-
How deep learning is empowering semantic segmentation: Traditional and deep learning techniques for semantic segmentation: A comparison
por: Sehar, Uroosa, et al.
Publicado: (2022) -
Orchard Mapping with Deep Learning Semantic Segmentation
por: Anagnostis, Athanasios, et al.
Publicado: (2021) -
Semantic segmentation of multispectral photoacoustic images using deep learning
por: Schellenberg, Melanie, et al.
Publicado: (2022) -
Deep Semantic Segmentation of Angiogenesis Images
por: Ibragimov, Alisher, et al.
Publicado: (2023) -
A Deep Learning-Based Unbalanced Force Identification of the Hypergravity Centrifuge
por: Lin, Kuigeng, et al.
Publicado: (2023)