Cargando…
Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520210/ https://www.ncbi.nlm.nih.gov/pubmed/36179553 http://dx.doi.org/10.1016/j.ebiom.2022.104276 |
_version_ | 1784799573896593408 |
---|---|
author | Reel, Parminder S. Reel, Smarti van Kralingen, Josie C. Langton, Katharina Lang, Katharina Erlic, Zoran Larsen, Casper K. Amar, Laurence Pamporaki, Christina Mulatero, Paolo Blanchard, Anne Kabat, Marek Robertson, Stacy MacKenzie, Scott M. Taylor, Angela E. Peitzsch, Mirko Ceccato, Filippo Scaroni, Carla Reincke, Martin Kroiss, Matthias Dennedy, Michael C. Pecori, Alessio Monticone, Silvia Deinum, Jaap Rossi, Gian Paolo Lenzini, Livia McClure, John D. Nind, Thomas Riddell, Alexandra Stell, Anthony Cole, Christian Sudano, Isabella Prehn, Cornelia Adamski, Jerzy Gimenez-Roqueplo, Anne-Paule Assié, Guillaume Arlt, Wiebke Beuschlein, Felix Eisenhofer, Graeme Davies, Eleanor Zennaro, Maria-Christina Jefferson, Emily |
author_facet | Reel, Parminder S. Reel, Smarti van Kralingen, Josie C. Langton, Katharina Lang, Katharina Erlic, Zoran Larsen, Casper K. Amar, Laurence Pamporaki, Christina Mulatero, Paolo Blanchard, Anne Kabat, Marek Robertson, Stacy MacKenzie, Scott M. Taylor, Angela E. Peitzsch, Mirko Ceccato, Filippo Scaroni, Carla Reincke, Martin Kroiss, Matthias Dennedy, Michael C. Pecori, Alessio Monticone, Silvia Deinum, Jaap Rossi, Gian Paolo Lenzini, Livia McClure, John D. Nind, Thomas Riddell, Alexandra Stell, Anthony Cole, Christian Sudano, Isabella Prehn, Cornelia Adamski, Jerzy Gimenez-Roqueplo, Anne-Paule Assié, Guillaume Arlt, Wiebke Beuschlein, Felix Eisenhofer, Graeme Davies, Eleanor Zennaro, Maria-Christina Jefferson, Emily |
author_sort | Reel, Parminder S. |
collection | PubMed |
description | BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. METHODS: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. FINDINGS: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. INTERPRETATION: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. FUNDING: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1). |
format | Online Article Text |
id | pubmed-9520210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95202102022-09-30 Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study Reel, Parminder S. Reel, Smarti van Kralingen, Josie C. Langton, Katharina Lang, Katharina Erlic, Zoran Larsen, Casper K. Amar, Laurence Pamporaki, Christina Mulatero, Paolo Blanchard, Anne Kabat, Marek Robertson, Stacy MacKenzie, Scott M. Taylor, Angela E. Peitzsch, Mirko Ceccato, Filippo Scaroni, Carla Reincke, Martin Kroiss, Matthias Dennedy, Michael C. Pecori, Alessio Monticone, Silvia Deinum, Jaap Rossi, Gian Paolo Lenzini, Livia McClure, John D. Nind, Thomas Riddell, Alexandra Stell, Anthony Cole, Christian Sudano, Isabella Prehn, Cornelia Adamski, Jerzy Gimenez-Roqueplo, Anne-Paule Assié, Guillaume Arlt, Wiebke Beuschlein, Felix Eisenhofer, Graeme Davies, Eleanor Zennaro, Maria-Christina Jefferson, Emily eBioMedicine Articles BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. METHODS: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. FINDINGS: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. INTERPRETATION: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. FUNDING: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1). Elsevier 2022-09-27 /pmc/articles/PMC9520210/ /pubmed/36179553 http://dx.doi.org/10.1016/j.ebiom.2022.104276 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Reel, Parminder S. Reel, Smarti van Kralingen, Josie C. Langton, Katharina Lang, Katharina Erlic, Zoran Larsen, Casper K. Amar, Laurence Pamporaki, Christina Mulatero, Paolo Blanchard, Anne Kabat, Marek Robertson, Stacy MacKenzie, Scott M. Taylor, Angela E. Peitzsch, Mirko Ceccato, Filippo Scaroni, Carla Reincke, Martin Kroiss, Matthias Dennedy, Michael C. Pecori, Alessio Monticone, Silvia Deinum, Jaap Rossi, Gian Paolo Lenzini, Livia McClure, John D. Nind, Thomas Riddell, Alexandra Stell, Anthony Cole, Christian Sudano, Isabella Prehn, Cornelia Adamski, Jerzy Gimenez-Roqueplo, Anne-Paule Assié, Guillaume Arlt, Wiebke Beuschlein, Felix Eisenhofer, Graeme Davies, Eleanor Zennaro, Maria-Christina Jefferson, Emily Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study |
title | Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study |
title_full | Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study |
title_fullStr | Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study |
title_full_unstemmed | Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study |
title_short | Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study |
title_sort | machine learning for classification of hypertension subtypes using multi-omics: a multi-centre, retrospective, data-driven study |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520210/ https://www.ncbi.nlm.nih.gov/pubmed/36179553 http://dx.doi.org/10.1016/j.ebiom.2022.104276 |
work_keys_str_mv | AT reelparminders machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT reelsmarti machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT vankralingenjosiec machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT langtonkatharina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT langkatharina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT erliczoran machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT larsencasperk machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT amarlaurence machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT pamporakichristina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT mulateropaolo machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT blanchardanne machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT kabatmarek machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT robertsonstacy machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT mackenziescottm machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT taylorangelae machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT peitzschmirko machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT ceccatofilippo machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT scaronicarla machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT reinckemartin machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT kroissmatthias machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT dennedymichaelc machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT pecorialessio machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT monticonesilvia machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT deinumjaap machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT rossigianpaolo machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT lenzinilivia machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT mcclurejohnd machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT nindthomas machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT riddellalexandra machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT stellanthony machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT colechristian machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT sudanoisabella machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT prehncornelia machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT adamskijerzy machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT gimenezroqueploannepaule machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT assieguillaume machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT arltwiebke machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT beuschleinfelix machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT eisenhofergraeme machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT davieseleanor machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT zennaromariachristina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy AT jeffersonemily machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy |