Cargando…

Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study

BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary...

Descripción completa

Detalles Bibliográficos
Autores principales: Reel, Parminder S., Reel, Smarti, van Kralingen, Josie C., Langton, Katharina, Lang, Katharina, Erlic, Zoran, Larsen, Casper K., Amar, Laurence, Pamporaki, Christina, Mulatero, Paolo, Blanchard, Anne, Kabat, Marek, Robertson, Stacy, MacKenzie, Scott M., Taylor, Angela E., Peitzsch, Mirko, Ceccato, Filippo, Scaroni, Carla, Reincke, Martin, Kroiss, Matthias, Dennedy, Michael C., Pecori, Alessio, Monticone, Silvia, Deinum, Jaap, Rossi, Gian Paolo, Lenzini, Livia, McClure, John D., Nind, Thomas, Riddell, Alexandra, Stell, Anthony, Cole, Christian, Sudano, Isabella, Prehn, Cornelia, Adamski, Jerzy, Gimenez-Roqueplo, Anne-Paule, Assié, Guillaume, Arlt, Wiebke, Beuschlein, Felix, Eisenhofer, Graeme, Davies, Eleanor, Zennaro, Maria-Christina, Jefferson, Emily
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520210/
https://www.ncbi.nlm.nih.gov/pubmed/36179553
http://dx.doi.org/10.1016/j.ebiom.2022.104276
_version_ 1784799573896593408
author Reel, Parminder S.
Reel, Smarti
van Kralingen, Josie C.
Langton, Katharina
Lang, Katharina
Erlic, Zoran
Larsen, Casper K.
Amar, Laurence
Pamporaki, Christina
Mulatero, Paolo
Blanchard, Anne
Kabat, Marek
Robertson, Stacy
MacKenzie, Scott M.
Taylor, Angela E.
Peitzsch, Mirko
Ceccato, Filippo
Scaroni, Carla
Reincke, Martin
Kroiss, Matthias
Dennedy, Michael C.
Pecori, Alessio
Monticone, Silvia
Deinum, Jaap
Rossi, Gian Paolo
Lenzini, Livia
McClure, John D.
Nind, Thomas
Riddell, Alexandra
Stell, Anthony
Cole, Christian
Sudano, Isabella
Prehn, Cornelia
Adamski, Jerzy
Gimenez-Roqueplo, Anne-Paule
Assié, Guillaume
Arlt, Wiebke
Beuschlein, Felix
Eisenhofer, Graeme
Davies, Eleanor
Zennaro, Maria-Christina
Jefferson, Emily
author_facet Reel, Parminder S.
Reel, Smarti
van Kralingen, Josie C.
Langton, Katharina
Lang, Katharina
Erlic, Zoran
Larsen, Casper K.
Amar, Laurence
Pamporaki, Christina
Mulatero, Paolo
Blanchard, Anne
Kabat, Marek
Robertson, Stacy
MacKenzie, Scott M.
Taylor, Angela E.
Peitzsch, Mirko
Ceccato, Filippo
Scaroni, Carla
Reincke, Martin
Kroiss, Matthias
Dennedy, Michael C.
Pecori, Alessio
Monticone, Silvia
Deinum, Jaap
Rossi, Gian Paolo
Lenzini, Livia
McClure, John D.
Nind, Thomas
Riddell, Alexandra
Stell, Anthony
Cole, Christian
Sudano, Isabella
Prehn, Cornelia
Adamski, Jerzy
Gimenez-Roqueplo, Anne-Paule
Assié, Guillaume
Arlt, Wiebke
Beuschlein, Felix
Eisenhofer, Graeme
Davies, Eleanor
Zennaro, Maria-Christina
Jefferson, Emily
author_sort Reel, Parminder S.
collection PubMed
description BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. METHODS: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. FINDINGS: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. INTERPRETATION: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. FUNDING: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1).
format Online
Article
Text
id pubmed-9520210
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95202102022-09-30 Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study Reel, Parminder S. Reel, Smarti van Kralingen, Josie C. Langton, Katharina Lang, Katharina Erlic, Zoran Larsen, Casper K. Amar, Laurence Pamporaki, Christina Mulatero, Paolo Blanchard, Anne Kabat, Marek Robertson, Stacy MacKenzie, Scott M. Taylor, Angela E. Peitzsch, Mirko Ceccato, Filippo Scaroni, Carla Reincke, Martin Kroiss, Matthias Dennedy, Michael C. Pecori, Alessio Monticone, Silvia Deinum, Jaap Rossi, Gian Paolo Lenzini, Livia McClure, John D. Nind, Thomas Riddell, Alexandra Stell, Anthony Cole, Christian Sudano, Isabella Prehn, Cornelia Adamski, Jerzy Gimenez-Roqueplo, Anne-Paule Assié, Guillaume Arlt, Wiebke Beuschlein, Felix Eisenhofer, Graeme Davies, Eleanor Zennaro, Maria-Christina Jefferson, Emily eBioMedicine Articles BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. METHODS: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. FINDINGS: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. INTERPRETATION: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. FUNDING: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1). Elsevier 2022-09-27 /pmc/articles/PMC9520210/ /pubmed/36179553 http://dx.doi.org/10.1016/j.ebiom.2022.104276 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Articles
Reel, Parminder S.
Reel, Smarti
van Kralingen, Josie C.
Langton, Katharina
Lang, Katharina
Erlic, Zoran
Larsen, Casper K.
Amar, Laurence
Pamporaki, Christina
Mulatero, Paolo
Blanchard, Anne
Kabat, Marek
Robertson, Stacy
MacKenzie, Scott M.
Taylor, Angela E.
Peitzsch, Mirko
Ceccato, Filippo
Scaroni, Carla
Reincke, Martin
Kroiss, Matthias
Dennedy, Michael C.
Pecori, Alessio
Monticone, Silvia
Deinum, Jaap
Rossi, Gian Paolo
Lenzini, Livia
McClure, John D.
Nind, Thomas
Riddell, Alexandra
Stell, Anthony
Cole, Christian
Sudano, Isabella
Prehn, Cornelia
Adamski, Jerzy
Gimenez-Roqueplo, Anne-Paule
Assié, Guillaume
Arlt, Wiebke
Beuschlein, Felix
Eisenhofer, Graeme
Davies, Eleanor
Zennaro, Maria-Christina
Jefferson, Emily
Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
title Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
title_full Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
title_fullStr Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
title_full_unstemmed Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
title_short Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
title_sort machine learning for classification of hypertension subtypes using multi-omics: a multi-centre, retrospective, data-driven study
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520210/
https://www.ncbi.nlm.nih.gov/pubmed/36179553
http://dx.doi.org/10.1016/j.ebiom.2022.104276
work_keys_str_mv AT reelparminders machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT reelsmarti machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT vankralingenjosiec machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT langtonkatharina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT langkatharina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT erliczoran machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT larsencasperk machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT amarlaurence machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT pamporakichristina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT mulateropaolo machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT blanchardanne machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT kabatmarek machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT robertsonstacy machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT mackenziescottm machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT taylorangelae machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT peitzschmirko machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT ceccatofilippo machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT scaronicarla machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT reinckemartin machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT kroissmatthias machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT dennedymichaelc machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT pecorialessio machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT monticonesilvia machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT deinumjaap machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT rossigianpaolo machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT lenzinilivia machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT mcclurejohnd machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT nindthomas machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT riddellalexandra machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT stellanthony machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT colechristian machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT sudanoisabella machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT prehncornelia machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT adamskijerzy machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT gimenezroqueploannepaule machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT assieguillaume machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT arltwiebke machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT beuschleinfelix machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT eisenhofergraeme machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT davieseleanor machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT zennaromariachristina machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy
AT jeffersonemily machinelearningforclassificationofhypertensionsubtypesusingmultiomicsamulticentreretrospectivedatadrivenstudy