Cargando…
Protein–protein interaction prediction with deep learning: A comprehensive review
Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein–protein interactions (PPI). However, finding the interacting and non-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520216/ https://www.ncbi.nlm.nih.gov/pubmed/36212542 http://dx.doi.org/10.1016/j.csbj.2022.08.070 |
Sumario: | Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein–protein interactions (PPI). However, finding the interacting and non-interacting protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the variety of proteins. Hence, protein–protein interaction and protein–ligand binding problems have drawn attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions and attributes of a protein, and modify and design new proteins to provide desired functions. This review focuses on recent deep learning methods applied to problems including predicting protein functions, protein–protein interaction and their sites, protein–ligand binding, and protein design. |
---|