Cargando…
Protein–protein interaction prediction with deep learning: A comprehensive review
Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein–protein interactions (PPI). However, finding the interacting and non-...
Autores principales: | Soleymani, Farzan, Paquet, Eric, Viktor, Herna, Michalowski, Wojtek, Spinello, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520216/ https://www.ncbi.nlm.nih.gov/pubmed/36212542 http://dx.doi.org/10.1016/j.csbj.2022.08.070 |
Ejemplares similares
-
ProtInteract: A deep learning framework for predicting protein–protein interactions
por: Soleymani, Farzan, et al.
Publicado: (2023) -
Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review
por: Paquet, Eric, et al.
Publicado: (2015) -
Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review
por: Lee, Minhyeok
Publicado: (2023) -
Deep learning frameworks for protein–protein interaction prediction
por: Hu, Xiaotian, et al.
Publicado: (2022) -
Deep learning in the stock market—a systematic survey of practice, backtesting, and applications
por: Olorunnimbe, Kenniy, et al.
Publicado: (2022)