Cargando…
CAT-CPI: Combining CNN and transformer to learn compound image features for predicting compound-protein interactions
Compound-protein interaction (CPI) prediction is a foundational task for drug discovery, which process is time-consuming and costly. The effectiveness of CPI prediction can be greatly improved using deep learning methods to accelerate drug development. Large number of recent research results in the...
Autores principales: | Qian, Ying, Wu, Jian, Zhang, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520300/ https://www.ncbi.nlm.nih.gov/pubmed/36188230 http://dx.doi.org/10.3389/fmolb.2022.963912 |
Ejemplares similares
-
PreBINDS: An Interactive Web Tool to Create Appropriate Datasets for Predicting Compound–Protein Interactions
por: Ikeda, Kazuyoshi, et al.
Publicado: (2021) -
SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking
por: Murail, Samuel, et al.
Publicado: (2021) -
The role of sulfur compounds in chronic obstructive pulmonary disease
por: Jiang, Simin, et al.
Publicado: (2022) -
Editorial: Interaction of Biomolecules and Bioactive Compounds With the SARS-CoV-2 Proteins: Molecular Simulations for the Fight Against Covid-19
por: Falconi, Mattia, et al.
Publicado: (2022) -
MCN-CPI: Multiscale Convolutional Network for Compound–Protein Interaction Prediction
por: Wang, Shuang, et al.
Publicado: (2021)