Cargando…
超高效液相色谱-高分辨质谱法测定中华绒螯蟹中游离氨基酸
Eriocheir sinensis is a unique freshwater crab found in China, which is well known for its rich nutrition and sweet and delicious taste. Free amino acids in Eriocheir sinensis are not only important nutrients but also are closely related to their unique taste and aroma. Therefore, the determination...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial board of Chinese Journal of Chromatography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520373/ https://www.ncbi.nlm.nih.gov/pubmed/36156629 http://dx.doi.org/10.3724/SP.J.1123.2022.03027 |
Sumario: | Eriocheir sinensis is a unique freshwater crab found in China, which is well known for its rich nutrition and sweet and delicious taste. Free amino acids in Eriocheir sinensis are not only important nutrients but also are closely related to their unique taste and aroma. Therefore, the determination of the free amino acid contents in Eriocheir sinensis is of great significance for product quality evaluation, flavor research, authenticity, and origin identification. Herein we proposed an ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based method for the determination of 17 free amino acids in Eriocheir sinensis. First, 5 g of the Eriocheir sinensis sample was weighed into a 50-mL polypropylene centrifuge tube. Then, 10 mL of extraction solvents was added to the centrifuge tube, and the resultant solution was mixed well using a vortex mixer. We compared a variety of solvents and finally selected 5%(v/v) perchloric acid aqueous solution as the optimum extraction solvent. The supernatant was transferred to another polypropylene centrifuge tube after centrifuging at 8000 r/min for 5 min. The extraction procedure was repeated according to the above-mentioned steps, and the extraction solution was combined with the supernatant. The extracts were then adjusted to pH 6.5 with 1 mol/L potassium hydroxide solution, and were diluted to 50 mL with water. After filtering by both qualitative filter paper and a 0.45-μm polyether sulfone syringe filter, the extracts were determined by UHPLC-HRMS. We compared three types of mobile phases and chose 0.1%(v/v) formic acid aqueous solution mixed with acetonitrile as the optimum one. Precise parent ion and ion source parameters were also optimized. The 17 analytes, viz. aspartic acid, threonine, serine, glutamic acid, proline, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, arginine, glycine, alanine, and histidine, were separated on an XDB-C(18) column (100 mm×4.6 mm, 1.7 μm) with gradient elution. The amino acids were then detected by HRMS in electrospray ionization and selected ion monitoring modes, and the analytes were quantified using external standards. The instrumental detection limit (IDL) and the instrumental quantification limit (IQL) were 0.3 mg/L and 1.0 mg/L, respectively. The linear correlation coefficients were all above 0.9990 in the concentration range of 10.0-200.0 mg/kg. Three levels of free amino acid standards were spiked into the edible parts of Eriocheir sinensis. The recoveries of the amino acids were between 78.4% and 105.3%. The intra-sample, intra-day, and inter-day repeatabilities were below 4.2%, 5.2%, and 11.4%, respectively, which were within reasonable ranges. Twenty samples of Eriocheir sinensis were tested using the proposed method. Thus, in this study, we developed an alternative method for the determination of free amino acids in Eriocheir sinensis with simple pretreatment, good selectivity, and high accuracy. |
---|