Cargando…

The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review

Cardiac stereotactic body radiation therapy (cSBRT) is a non-invasive treatment modality that has been recently reported as an effective treatment for ventricular arrhythmias refractory to medical therapy and catheter ablation. The approach leverages tools developed and refined in radiation oncology...

Descripción completa

Detalles Bibliográficos
Autores principales: Whitaker, John, Zei, Paul C., Ahmad, Shahreen, Niederer, Steven, O'Neill, Mark, Rinaldi, Christopher A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520407/
https://www.ncbi.nlm.nih.gov/pubmed/36186961
http://dx.doi.org/10.3389/fcvm.2022.989886
_version_ 1784799620563468288
author Whitaker, John
Zei, Paul C.
Ahmad, Shahreen
Niederer, Steven
O'Neill, Mark
Rinaldi, Christopher A.
author_facet Whitaker, John
Zei, Paul C.
Ahmad, Shahreen
Niederer, Steven
O'Neill, Mark
Rinaldi, Christopher A.
author_sort Whitaker, John
collection PubMed
description Cardiac stereotactic body radiation therapy (cSBRT) is a non-invasive treatment modality that has been recently reported as an effective treatment for ventricular arrhythmias refractory to medical therapy and catheter ablation. The approach leverages tools developed and refined in radiation oncology, where experience has been accumulated in the treatment of a wide variety of malignant conditions. However, important differences exist between rapidly dividing malignant tumor cells and fully differentiated myocytes in pathologically remodeled ventricular myocardium, which represent the respective radiation targets. Despite its initial success, little is known about the radiobiology of the anti-arrhythmic effect cSBRT. Pre-clinical data indicates a late fibrotic effect of that appears between 3 and 4 months following cSBRT, which may result in conduction slowing and block. However, there is clear clinical evidence of an anti-arrhythmic effect of cSBRT that precedes the appearance of radiation induced fibrosis for which the mechanism is unclear. In addition, the data to date suggests that even the late anti-arrhythmic effect of cSBRT is not fully attributable to radiation.-induced fibrosis. Pre-clinical data has identified upregulation of proteins expected to result in both increased cell-to-cell coupling and excitability in the early post cSBRT period and demonstrated an associated increase in myocardial conduction velocity. These observations indicate a complex response to radiotherapy and highlight the lack of clarity regarding the different stages of the anti-arrhythmic mechanism of cSBRT. It may be speculated that in the future cSBRT therapy could be planned to deliver both early and late radiation effects titrated to optimize the combined anti-arrhythmic efficacy of the treatment. In addition to these outstanding mechanistic questions, the optimal patient selection, radiation modality, radiation dose and treatment planning strategy are currently being investigated. In this review, we consider the structural and functional effect of radiation on myocardium and the possible anti-arrhythmic mechanisms of cSBRT. Review of the published data highlights the exciting prospects for the development of knowledge and understanding in this area in which so many outstanding questions exist.
format Online
Article
Text
id pubmed-9520407
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95204072022-09-30 The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review Whitaker, John Zei, Paul C. Ahmad, Shahreen Niederer, Steven O'Neill, Mark Rinaldi, Christopher A. Front Cardiovasc Med Cardiovascular Medicine Cardiac stereotactic body radiation therapy (cSBRT) is a non-invasive treatment modality that has been recently reported as an effective treatment for ventricular arrhythmias refractory to medical therapy and catheter ablation. The approach leverages tools developed and refined in radiation oncology, where experience has been accumulated in the treatment of a wide variety of malignant conditions. However, important differences exist between rapidly dividing malignant tumor cells and fully differentiated myocytes in pathologically remodeled ventricular myocardium, which represent the respective radiation targets. Despite its initial success, little is known about the radiobiology of the anti-arrhythmic effect cSBRT. Pre-clinical data indicates a late fibrotic effect of that appears between 3 and 4 months following cSBRT, which may result in conduction slowing and block. However, there is clear clinical evidence of an anti-arrhythmic effect of cSBRT that precedes the appearance of radiation induced fibrosis for which the mechanism is unclear. In addition, the data to date suggests that even the late anti-arrhythmic effect of cSBRT is not fully attributable to radiation.-induced fibrosis. Pre-clinical data has identified upregulation of proteins expected to result in both increased cell-to-cell coupling and excitability in the early post cSBRT period and demonstrated an associated increase in myocardial conduction velocity. These observations indicate a complex response to radiotherapy and highlight the lack of clarity regarding the different stages of the anti-arrhythmic mechanism of cSBRT. It may be speculated that in the future cSBRT therapy could be planned to deliver both early and late radiation effects titrated to optimize the combined anti-arrhythmic efficacy of the treatment. In addition to these outstanding mechanistic questions, the optimal patient selection, radiation modality, radiation dose and treatment planning strategy are currently being investigated. In this review, we consider the structural and functional effect of radiation on myocardium and the possible anti-arrhythmic mechanisms of cSBRT. Review of the published data highlights the exciting prospects for the development of knowledge and understanding in this area in which so many outstanding questions exist. Frontiers Media S.A. 2022-09-15 /pmc/articles/PMC9520407/ /pubmed/36186961 http://dx.doi.org/10.3389/fcvm.2022.989886 Text en Copyright © 2022 Whitaker, Zei, Ahmad, Niederer, O'Neill and Rinaldi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Whitaker, John
Zei, Paul C.
Ahmad, Shahreen
Niederer, Steven
O'Neill, Mark
Rinaldi, Christopher A.
The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review
title The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review
title_full The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review
title_fullStr The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review
title_full_unstemmed The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review
title_short The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review
title_sort effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: a review
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520407/
https://www.ncbi.nlm.nih.gov/pubmed/36186961
http://dx.doi.org/10.3389/fcvm.2022.989886
work_keys_str_mv AT whitakerjohn theeffectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT zeipaulc theeffectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT ahmadshahreen theeffectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT niederersteven theeffectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT oneillmark theeffectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT rinaldichristophera theeffectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT whitakerjohn effectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT zeipaulc effectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT ahmadshahreen effectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT niederersteven effectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT oneillmark effectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview
AT rinaldichristophera effectofionizingradiationthroughcardiacstereotacticbodyradiationtherapyonmyocardialtissueforrefractoryventriculararrhythmiasareview