Cargando…
Prediction of lymph node metastasis in patients with breast invasive micropapillary carcinoma based on machine learning and SHapley Additive exPlanations framework
ABSTRACT: Background and purpose: Machine learning (ML) is applied for outcome prediction and treatment support. This study aims to develop different ML models to predict risk of axillary lymph node metastasis (LNM) in breast invasive micropapillary carcinoma (IMPC) and to explore the risk factors o...
Autores principales: | Jiang, Cong, Xiu, Yuting, Qiao, Kun, Yu, Xiao, Zhang, Shiyuan, Huang, Yuanxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520536/ https://www.ncbi.nlm.nih.gov/pubmed/36185290 http://dx.doi.org/10.3389/fonc.2022.981059 |
Ejemplares similares
-
Exploring kinase family inhibitors and their moiety preferences using deep SHapley additive exPlanations
por: Fan, You-Wei, et al.
Publicado: (2022) -
New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums
por: Lu, Ying, et al.
Publicado: (2023) -
Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations
por: Dong, Sheng, et al.
Publicado: (2022) -
Understanding Arteriosclerotic Heart Disease Patients Using Electronic Health Records: A Machine Learning and Shapley Additive exPlanations Approach
por: Miranda, Eka, et al.
Publicado: (2023)