Cargando…
Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography
As an important component to promote the development of affective brain–computer interfaces, the study of emotion recognition based on electroencephalography (EEG) has encountered a difficult challenge; the distribution of EEG data changes among different subjects and at different time periods. Doma...
Autores principales: | Liang, Shengjin, Su, Lei, Fu, Yunfa, Wu, Liping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520599/ https://www.ncbi.nlm.nih.gov/pubmed/36188181 http://dx.doi.org/10.3389/fnhum.2022.921346 |
Ejemplares similares
-
Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition
por: Cao, Jiangsheng, et al.
Publicado: (2022) -
A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition
por: Chai, Xin, et al.
Publicado: (2017) -
MS-MDA: Multisource Marginal Distribution Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
por: Chen, Hao, et al.
Publicado: (2021) -
Review on Emotion Recognition Based on Electroencephalography
por: Liu, Haoran, et al.
Publicado: (2021) -
Cross-Domain Echocardiography Segmentation with Multi-Space Joint Adaptation
por: Chen, Tongwaner, et al.
Publicado: (2023)